Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 32
Induction surface hardening
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2024
DOI: 10.31399/asm.tb.hisppa.t56110011
EISBN: 978-1-62708-483-3
Abstract
This chapter focuses on induction heating principles, including penetration depth and temperature distribution, frequency ranges, inductor efficiency, and power turnover. It also lists the power densities of commonly used heat sources.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2024
DOI: 10.31399/asm.tb.hisppa.t56110067
EISBN: 978-1-62708-483-3
Abstract
This chapter provides a discussion on the power supplies of modern induction heating plants. It describes the mode of operation and functional principle of an inverter. The chapter also provides a short note on generator cooling, which is required for the components of the induction power supply. It then presents an overview of induction heating systems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2024
DOI: 10.31399/asm.tb.hisppa.t56110079
EISBN: 978-1-62708-483-3
Abstract
This chapter explains the fundamentals of soldering technology and provides an overview of the soldering process. It discusses the wetting of the molten solder filler metal to the base material surface and the design aspects when induction heating is used to make the solder joint.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2024
DOI: 10.31399/asm.tb.hisppa.t56110099
EISBN: 978-1-62708-483-3
Abstract
This chapter presents the following groupings of metals and alloys that are soldered together: steel and iron-base alloys, aluminum and aluminum alloys, and copper and copper alloys. It also presents the ancillary materials and process methods that assist the solder filler metal in completing the solder joint through induction heating. The chapter focuses on the selection of fluxes and the use of inert gases or even vacuum to realize an oxide-free base material surface both before and during the soldering process.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2024
DOI: 10.31399/asm.tb.hisppa.t56110135
EISBN: 978-1-62708-483-3
Abstract
This chapter explores case studies on using induction heating for joining applications, encompassing both soldering and brazing to demonstrate versatility. Each study focuses on inductor coil design, workpiece geometry, and production quantities, emphasizing optimization due to the interplay between material geometry, coil configuration, and process parameters like generator frequency and power. The case studies provide real-world data on effectively implementing induction heating in joining processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2024
DOI: 10.31399/asm.tb.phtpp.t59380085
EISBN: 978-1-62708-456-7
Abstract
This chapter describes case depth and discusses flame hardening, laser heat treatment, electron beam hardening, induction heat treatment, and induction hardening.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.9781627083119
EISBN: 978-1-62708-311-9
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050001
EISBN: 978-1-62708-311-9
Abstract
This chapter provides a brief review of the scientific and technological developments leading to the widespread use of induction heat treating and its many applications in industry.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050009
EISBN: 978-1-62708-311-9
Abstract
This chapter discusses the basic principles of induction heating and related engineering considerations. It describes the design and operation of induction coils, the magnitude and distribution of magnetic fields, and the forces that generate eddy currents in metals. It explains how induced electrical current causes metal to heat in proportion to their electrical resistance and how it affects temperature dependent properties such as resistivity and specific heat and, in turn, heating rates and efficiencies. It also discusses the effect of hysteresis and explains why eddy currents tend to be confined to the outer surface of the workpiece, a phenomenon known as the skin effect. The chapter includes several data plots showing how the depth of heating varies with frequency and how heating time, power density, and thermal conduction rate correspond with hardening depth.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050025
EISBN: 978-1-62708-311-9
Abstract
This chapter discusses the basic components in an induction heat treating system. It describes the design and operating characteristics of power supplies, load-matching transformers, tuning capacitors, power regulators, controllers, process monitors, and diagnostic systems. It also provides information on fixtures and work-handling devices, quench systems, and load matching and tuning procedures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050057
EISBN: 978-1-62708-311-9
Abstract
This chapter discusses the design and operating principles of various types of electromagnetic coils. It explains how induction coils are classified based on the direction of the eddy currents they induce in the workpiece and the corresponding orientation, whether longitudinal or transverse, of the associated magnetic flux. It then discusses the factors that influence coil design and selection, including coupling efficiency, frequency, the number and spacing of turns, and the use of flux intensifiers. It also includes images and illustrations of various types of coils and coil geometries for basic as well as special purpose applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050139
EISBN: 978-1-62708-311-9
Abstract
This chapter discusses the quenching process and its adaptation to induction heat treating. It describes the three stages of quenching, the cooling characteristics of various types of quenchants, and the details of nearly a dozen compatible quenching methods. It also explains how to verify whether a quenchant can cool a workpiece fast enough to achieve martensitic transformation without cracking or distortion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050155
EISBN: 978-1-62708-311-9
Abstract
Induction hardened steels are often tempered to increase their ductility and relieve quenching stresses. During tempering, martensitic microstructures supersaturated with carbon decompose into a more stable, ductile form. This chapter discusses the transformations associated with the tempering process and their effect on ductility as well as other properties. It describes the structural and compositional changes that occur during the four stages of tempering, the relative influence of time and temperature, and how tempering affects the hardness of various grades of steel. The chapter discusses the practice of both furnace and induction tempering, describing where and how they are used, their tempering characteristics, strengths and limitations, and operating parameters. It also discusses the use of residual heat tempering, a self-tempering process.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050191
EISBN: 978-1-62708-311-9
Abstract
Induction heat treating is used in a wide range of applications. Typical uses, as described in this chapter, include the surface hardening of many types of shafts as well as gears and sprockets and the through-hardening of gripping teeth, cutting edges, and impact zones incorporated into various types of tools and track pins manufactured for off-highway equipment.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050215
EISBN: 978-1-62708-311-9
Abstract
This chapters discusses the considerations involved in the qualification and analysis of induction hardening treatments. The discussion covers material selection and prior heat treatment, hardness and case depth, frequency selection, power density and heating time, part and process tolerances, geometrical effects, quenchant selection, coil design, and work-handling equipment. The chapter also presents several examples, walking readers though each step, and discusses the development of setup instructions and operating procedures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050245
EISBN: 978-1-62708-311-9
Abstract
This chapter discusses the methods and procedures used for inspecting induction-hardened parts. It provides information on hardness and case depth measurements, nondestructive testing and surface analysis, the effect of various hardening errors, and relevant test standards.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050263
EISBN: 978-1-62708-311-9
Abstract
This chapter presents a step-by-step approach for analyzing the causes of nonconforming workpieces and determining potential solutions. The discussion covers a wide range of issues, including testing errors, latent and process-related defects, examination and testing techniques, defect characterization, and effective remedial actions.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050281
EISBN: 978-1-62708-311-9
Abstract
This chapter discusses quality control programs and procedures for induction heat-treating systems and includes related forms and checklists.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050293
EISBN: 978-1-62708-311-9
Abstract
This chapter discusses the maintenance needs of major components in induction heat-treating systems, including power supplies, heat stations, capacitors, high-frequency output stages, induction coils, water systems, quench systems, and fixturing.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050301
EISBN: 978-1-62708-311-9
Abstract
This appendix is a glossary of terms related to induction heat treating.
1