Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 58
Coating
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2024
DOI: 10.31399/asm.tb.pmamfa.t59400163
EISBN: 978-1-62708-479-6
Abstract
The porous structure of powder-metal materials, and thus the sintering method, has a significant impact not only on the properties of PM components, but also on how they respond to surface treatments and fabrication processes such as coating and joining. This chapter explains how the microstructure of PM parts achieved by different sintering methods influences the development of galvanized coatings and the mechanisms involved in sinter bonding and various welding and brazing processes. It presents and interprets the results of several studies in which PM materials, including iron, copper, stainless steel, brass, and bronze alloys, are joined by spot welding, projection welding, and solid-state welding as well as furnace and microwave brazing. It also examines the effects of ZrSiO 4 additions on the friction and wear behaviors of PM bronze brake-lining materials.
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2024
DOI: 10.31399/asm.tb.pmamfa.9781627084796
EISBN: 978-1-62708-479-6
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2023
DOI: 10.31399/asm.tb.ciktmse.t56080001
EISBN: 978-1-62708-460-4
Abstract
This chapter covers the engineering aspects of corrosion inhibitors and their effect on corrosion reactions. It explains how different metallic salts and heterocyclic compounds influence chemical reactions on metal surfaces exposed to corrosive media or environments. It describes how to evaluate inhibition efficiency through weight loss measurements, linear polarization resistance tests, electrochemical impedance spectroscopy, electrochemical noise monitoring, and surface analysis. It demonstrates the use of potentiodynamic polarization curves, Tafel extrapolations, equivalent circuit models, and various methods for characterizing corrosion damage and protective surface films. It also discusses typical applications, industry trends, and the emerging role of high-throughput experimentation, quantitative modeling, and machine learning in the development of cleaner and more effective corrosion inhibitors.
Book Chapter
Book: Introduction to Thin Film Deposition Techniques: Key Topics in Materials Science and Engineering
Series: ASM Technical Books
Publisher: ASM International
Published: 31 January 2023
DOI: 10.31399/asm.tb.itfdtktmse.t56060001
EISBN: 978-1-62708-440-6
Abstract
This chapter presents the theory and practice associated with the application of thin films. The first half of the chapter describes physical deposition processes in which functional coatings are deposited on component surfaces using mechanical, electromechanical, or thermodynamic techniques. Physical vapor deposition (PVD) techniques include sputtering, e-beam evaporation, arc-PVD, and ion plating and are best suited for elements and compounds with moderate melting points or when a high-purity film is required. The remainder of the chapter covers chemical vapor deposition (CVD) processes, including atomic layer deposition, plasma-enhanced and plasma-assisted CVD, and various forms of vapor-phase epitaxy, which are commonly used for compound films or when deposit purity is less critical. A brief application overview is also presented.
Book: Introduction to Thin Film Deposition Techniques: Key Topics in Materials Science and Engineering
Series: ASM Technical Books
Publisher: ASM International
Published: 31 January 2023
DOI: 10.31399/asm.tb.itfdtktmse.t56060013
EISBN: 978-1-62708-440-6
Series: ASM Technical Books
Publisher: ASM International
Published: 31 January 2023
DOI: 10.31399/asm.tb.itfdtktmse.9781627084406
EISBN: 978-1-62708-440-6
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2022
DOI: 10.31399/asm.tb.dsktmse.9781627084321
EISBN: 978-1-62708-432-1
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2022
DOI: 10.31399/asm.tb.dsktmse.t56050001
EISBN: 978-1-62708-432-1
Abstract
A working knowledge of diffusion is necessary to understand and predict the behavior of metals and alloys during manufacturing and in certain types of service. This chapter covers the fundamentals of diffusion in solids and some of the applications in which diffusion plays a role. It discusses the mechanisms behind interstitial, substitutional, grain boundary, and surface diffusion, the derivation and use of Fick’s laws, and the basic principles of diffusion coating processes, including carburizing, nitriding, nitrocarburizing, cyaniding, carbonitriding, boriding, aluminizing, siliconizing, chromizing, vanadizing, and titanizing. It also discusses diffusion bonding and presents several approaches for dealing with oxide barrier problems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2022
DOI: 10.31399/asm.tb.dsktmse.t56050031
EISBN: 978-1-62708-432-1
Abstract
This chapter familiarizes readers with the use of Fick’s laws of diffusion in heat treating, coating, and other metallurgical processes. It contains worked solutions to nearly 30 problems requiring the calculation of activation energy, diffusion coefficient, concentration level, surface layer thickness, case depth, and processing time and temperature. The selected problems deal with various types of iron, steel, and nonferrous alloys and processes ranging from aluminizing, chromizing, carburizing, and plasma nitriding to hydrogen dissipation, decarburizing, and oxidation. A few diffusion problems involving single-crystal silicon are also included.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.t56040010
EISBN: 978-1-62708-428-4
Abstract
This article provides a brief description of commercially important thermal spray processes and gives examples of applications and application requirements. The processes covered are flame, wire arc, plasma, high-velocity oxyfuel processes, detonation gun, and cold spray methods. Examples are provided of the applications in aerospace, automotive, and medical device industries as well as the use of thermal spray as an additive manufacturing technique.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.t56040020
EISBN: 978-1-62708-428-4
Abstract
This article summarizes the results of work completed by the ASM Thermal Spray Society Advisory Committee to identify key research challenges and opportunities in the thermal spray field. It describes and prioritizes research priorities related to emerging process methods, thermal spray markets and applications, and process robustness, reliability, and economics.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.t56040030
EISBN: 978-1-62708-428-4
Abstract
This article presents best practices for the metallographic preparation of specimens produced via thermal spray coating methods. It outlines typical metallographic preparation process flow, highlighting important considerations for obtaining a clear and representative specimen suitable for characterization via examination techniques, such as optical or electron microscopy. The process flow includes preliminary resin infiltration, sectioning, mounting, grinding, and polishing. To aid in the identification and resolution of common issues during subsequent specimen analysis, the article presents common issues, along with causes and mitigation strategies. It describes the processes involved in the interpretation of the thermal spray coating microstructure.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.t56040055
EISBN: 978-1-62708-428-4
Abstract
Thermal barrier coatings (TBCs) are applied using thermal spray coating (TSC) processes to components that are internally cooled and operated in a heated environment. The TSC microstructures are prone to interactions with common metallographic procedures that may result in artifacts and misinterpretation of the TSC microstructure. This article aims to aid in identifying metallographic TSC artifacts, specifically in the air plasma spray zirconia-based TBC, including both of its common constituents, the bond coating and the top coating. Artifacts that result from specific sectioning and mounting practices, as well as from different polishing times, are presented. Additionally, the article discusses the factors in optical microscopy and scanning electron microscopy that affect microstructure interpretation.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.t56040069
EISBN: 978-1-62708-428-4
Abstract
Abradable coatings (such as Ni-4Cr-4Al/bentonite) are used throughout jet engines, primarily as sacrificial coatings into which moving components wear. This article presents the Accepted Practice for sample preparation of abradable coatings for metallographic analysis, based on round robin testing by several laboratories.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.t56040076
EISBN: 978-1-62708-428-4
Abstract
Molybdenum thermal spray coatings are used in aerospace and other industries for wear resistance applications. Metallographic sample preparation of molybdenum coatings presents unique challenges. The purpose of the investigation described in this article is to determine Accepted Practices for sample preparation to better understand the process related microstructures of thermal spray molybdenum powders. The committee followed a round robin approach to assess metallographic sample preparation by a variety of laboratories. The article summarizes the results of the committee’s work.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.t56040084
EISBN: 978-1-62708-428-4
Abstract
This article, prepared under the auspices of the ASM Thermal Spray Society Committees on Accepted Practices, describes a procedure for evaluating residual stresses in thermal spray coatings, which is an extension of the well-known layer removal method to include the Young’s modulus and Poisson’s ratio properties of the thermal spray coating material and the substrate. It presents questions and answers that were selected to introduce residual stresses in thermal spray coatings. The article describes equipment and the laboratory procedure for the modified layer removal method and provides the description of the residual stress specimen. It also describes the procedures for applying or installing bonded resistance strain gages, the dimensions of the test specimen, the procedure for removing layers, and the method for interpreting the data to evaluate residual stresses. The spreadsheet program, “ MLRM for Residual Stresses ,” is available as a supplement to this document.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.9781627084284
EISBN: 978-1-62708-428-4
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2022
DOI: 10.31399/asm.tb.mbheaktmse.t56030021
EISBN: 978-1-62708-418-5
Abstract
This chapter, presented in a question-and-answer format, covers many practical aspects of high-entropy alloys (HEAs). It provides clear and concise answers to more than 50 questions, imparting knowledge on alloying elements, heat treatments, diffusion mechanisms, phase formation, lattice distortion, crystal and grain structures, structure-property relationships, microstructure control, and characterization methods. It likewise explains how to calculate the effect of strengthening processes on the mechanical properties of HEAs and offers insights on how to balance strength, ductility, and density for specific applications. It also provides information on twinning behaviors, stacking faults, elastic properties, coating and film deposition methods, manufacturing challenges, and the use of computational techniques for alloy design.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110413
EISBN: 978-1-62708-247-1
Abstract
This article provides an overview of how to use the scanning electron microscope (SEM) for imaging integrated circuits. The discussion covers the principles of operation and practical techniques of the SEM. The techniques include sample mounting, sample preparation, sputter coating, sample tilt and image composition, focus and astigmatism correction, dynamic focus and image correction, raster alignment, and adjusting brightness and contrast. The article also provides information on achieving ultra-high resolution in the SEM. It concludes with information on the general characteristics and applications of environmental SEM.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.tb.hpcspa.9781627082853
EISBN: 978-1-62708-285-3
1