Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 30
Nickel alloys
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.t56040069
EISBN: 978-1-62708-428-4
Abstract
Abradable coatings (such as Ni-4Cr-4Al/bentonite) are used throughout jet engines, primarily as sacrificial coatings into which moving components wear. This article presents the Accepted Practice for sample preparation of abradable coatings for metallographic analysis, based on round robin testing by several laboratories.
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300227
EISBN: 978-1-62708-323-2
Abstract
This chapter covers the tribological properties of stainless steel and other corrosion-resistant alloys. It describes the metallurgy and microstructure of the basic types of stainless steel and their suitability for friction and wear applications and in environments where they are subjected to liquid, droplet, and solid particle erosion. It also discusses the tribology of nickel- and cobalt-base alloys as well as titanium, zinc, tin, aluminum, magnesium, beryllium, graphite, and different types of wood.
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310351
EISBN: 978-1-62708-326-3
Abstract
The term heat treatable alloys is used in reference to alloys that can be hardened by heat treatment, and this chapter briefly describes the major types of heat treatable nonferrous alloys. The discussion provides a general description of annealing cold-worked metals and describes some of the common nonferrous alloys that can be hardened through heat treatment. The nonferrous alloys covered include aluminum alloys, cobalt alloys, copper alloys, magnesium alloys, nickel alloys, and titanium alloys.
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.9781627083263
EISBN: 978-1-62708-326-3
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090135
EISBN: 978-1-62708-266-2
Abstract
Nickel and nickel-base alloys are specified for many applications, such as oil and gas production, power generation, and chemical processing, because of their resistance to stress-corrosion cracking (SCC). Under certain conditions, however, SCC can be a concern. This chapter describes the types of environments and stress loads where nickel-base alloys are most susceptible to SCC. It begins with a review of the physical metallurgy of nickel alloys, focusing on the role of carbides and intermetallic phases. It then explains how SCC occurs in the presence of halides (such as chlorides, bromides, iodides, and fluorides), sulfur-bearing compounds (such as H2S and sulfur-oxyanions), high-temperature and supercritical water, and caustics (such as NaOH), while accounting for temperature, composition, microstructure, properties, environmental contaminants, and other factors. The chapter also discusses the effects of hydrogen embrittlement and provides information on test methods.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.9781627082662
EISBN: 978-1-62708-266-2
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030039
EISBN: 978-1-62708-282-2
Abstract
This chapter provides a detailed account of crevice corrosion of metals. It begins by describing various critical factors influencing crevice corrosion. This is followed by a section presenting selected examples of crevice corrosion of stainless steel, nickel alloys, aluminum alloys, and titanium alloys in different environments. Methods that have been developed for differentiating and ranking the resistance of alloys toward crevice corrosion are then reviewed. The chapter concludes by discussing various strategies for the prevention of crevice corrosion, namely design awareness, use of inhibitors, and potential control methods.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030074
EISBN: 978-1-62708-282-2
Abstract
This chapter is dedicated mostly to the metallurgical effects on the corrosion behavior of corrosion-resistant alloys. It begins with a section describing the importance of alloying elements on the corrosion behavior of nickel alloys. The chapter considers the metallurgical effects of alloy composition for heat-resistant alloys, nickel corrosion-resistant alloys, and nickel-base alloys. This chapter also discusses the corrosion implications of changing the alloy microstructure via solid-state transformation, second-phase precipitation, or cold work. It concludes with a comparison of corrosion behavior between cast and wrought product forms.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030112
EISBN: 978-1-62708-282-2
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030148
EISBN: 978-1-62708-282-2
Abstract
Hydrogen damage is a form of environmentally assisted failure that results most often from the combined action of hydrogen and residual or applied tensile stress. This chapter classifies the various forms of hydrogen damage, summarizes the various theories that seek to explain hydrogen damage, and reviews hydrogen degradation in specific ferrous and nonferrous alloys. The preeminent theories for hydrogen damage are based on pressure, surface adsorption, decohesion, enhanced plastic flow, hydrogen attack, and hydride formation. The specific alloys covered are iron-base, nickel, aluminum, copper, titanium, zirconium, vanadium, niobium, and tantalum alloys.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030176
EISBN: 978-1-62708-282-2
Abstract
Stainless steels and nickel-base alloys are recognized for their resistance to general corrosion and other categories of corrosion. This chapter examines the effects of specific alloying elements, metallurgical structure, and mechanical conditioning on the corrosion resistance of these alloys. Some categories of corrosion covered are pitting, crevice, intergranular, stress-corrosion cracking, general, and high-temperature corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420339
EISBN: 978-1-62708-310-2
Abstract
This chapter discusses the basic principles of precipitation hardening, an important strengthening mechanism in nonferrous alloys as well as stainless steel. It begins with a detailed review of the theory of precipitation hardening, then describes its application to aluminum alloys and nickel-base superalloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060333
EISBN: 978-1-62708-261-7
Abstract
Nonferrous alloys are heat treated for a variety of reasons. Heat treating can reduce internal stresses, redistribute alloying elements, promote grain formation and growth, produce new phases, and alter surface chemistry. This chapter describes heat treatment processes and how nonferrous alloys respond to them. It provides information on aluminum, cobalt, copper, magnesium, nickel, and titanium alloys and their composition, microstructure, properties, and processing characteristics.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.sap.9781627083133
EISBN: 978-1-62708-313-3
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240547
EISBN: 978-1-62708-251-8
Abstract
Nickel and nickel alloys have an excellent combination of corrosion, oxidation, and heat resistance, combined with good mechanical properties. Nickel alloys can be divided into alloys that combine corrosion and heat resistance, superalloys for high-temperature applications, and special nickel alloys. Corrosion- and heat-resistant nickel alloys include commercially pure and low-alloy nickels, nickel-copper alloys, nickel-molybdenum and nickel-silicon alloys, nickel-chromium-iron alloys, nickel-chromium-molybdenum alloys, and nickel-chromium-iron-molybdenum-copper alloys. Special nickel alloys include electrical-resistance alloys, low-expansion alloys, magnetically soft alloys, and shape memory alloys. This chapter discusses the metallurgy, nominal composition, properties, applications, advantages, and disadvantages of these alloys. It also provides information on cobalt wear-resistant alloys and cobalt corrosion-resistant alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080249
EISBN: 978-1-62708-304-1
Abstract
This chapter examines the hot corrosion resistance of various nickel- and cobalt-base alloys in gas turbines susceptible to high-temperature (Type I) and low-temperature (Type II) hot corrosion. Type I hot corrosion is typically characterized by a thick, porous layer of oxides with the underlying alloy matrix depleted in chromium, followed (below) by internal chromium-rich sulfides. Type II hot corrosion is characterized by pitting with little or no internal attack underneath. As the chapter explains, chromium additions make alloys more resistant to all types of hot corrosion attacks.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080379
EISBN: 978-1-62708-304-1
Abstract
This chapter discusses two damage mechanisms in which stress plays a major role. In the one case, stress causes cracks in the oxide scale on metals, leading to preferential corrosion attack. An example from industry of this type of failure is the circumferential cracking that occurs on the waterwall tubes of supercritical coal-fired boilers fired under low NOx combustion conditions, conducive to the production of sulfidizing environments. In the other case, stress contributes to brittle fracture in the form of intergranular cracking. The phenomenon, which is known by various names, typically occurs at the lower end of the intermediate temperature range and has been observed in ferritic steels, stainless steels, Fe-Ni-Cr alloys, and nickel-base alloys, as described in the chapter.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080445
EISBN: 978-1-62708-304-1
Abstract
This appendix is a collection of tables listing the chemical compositions of wrought ferritic steels; wrought stainless steels; cast corrosion- and heat-resistant alloys; wrought iron-, nickel-, and cobalt-base alloys; cast nickel- and cobalt-base alloys; oxide-dispersion-strengthened alloys; and iron-, nickel- and cobalt-base filler metals.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.9781627083393
EISBN: 978-1-62708-339-3
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820125
EISBN: 978-1-62708-339-3
Abstract
Nickel-base alloys used for low-temperature aqueous corrosion are commonly referred to as corrosion-resistant alloys (CRAs), and nickel alloys used for high-temperature applications are known as heat-resistant alloys, high-temperature alloys, or superalloys. The emphasis in this chapter is on the CRAs and in particular nickel-chromium-molybdenum alloys. The chapter provides a basic understanding of general welding considerations and describes the welding metallurgy of molybdenum-containing CRAs and of nickel-copper, nickel-chromium, and nickel-chromium-iron CRAs. It discusses the corrosion behavior of nickel-molybdenum alloys and nickel-chromium-molybdenum alloys. Information on the phase stability and corrosion behavior of nickel-base alloys is also included.
1