Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 35
Wrought product forms
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.tb.atia.t59340117
EISBN: 978-1-62708-427-7
Abstract
This chapter provides an overview of the rolling and finishing processes required to create a sheet, plate, or foil product from a direct chill (DC) cast ingot. The flow paths, equipment, and operations are described with a view to the basic evolution of the microstructure, surface characteristics, and dimensions.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.tb.atia.t59340339
EISBN: 978-1-62708-427-7
Abstract
This chapter describes how aluminum sheet and foil alloys are processed to produce functional, economical packages that meet the various industry performance criteria. The focus is on the key customer requirements for three main application segments: foil, cans, and impact extrusions. A huge range of products in this industry segment is also illustrated. The need for sustainable production and recyclability is also discussed.
Series: ASM Technical Books
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.tb.atia.9781627084277
EISBN: 978-1-62708-427-7
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300199
EISBN: 978-1-62708-323-2
Abstract
This chapter covers the friction and wear behaviors of carbon, alloy, and tool steels. It begins a review of commercially available shapes and forms. It then describes the metallurgy and microstructure of various designations and grades of each type of steel and explains how it affects their performance in adhesive and abrasive wear applications and in environments where they are subjected to solid particle, droplet, slurry, and cavitation erosion and fretting damage.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090241
EISBN: 978-1-62708-266-2
Abstract
Aluminum is protected by a barrier oxide film that, if damaged, reforms immediately in most environments. Despite this inherent corrosion resistance, there are conditions where aluminum alloys, like many materials, are subject to the effects of stress-corrosion cracking (SCC). This chapter describes those conditions, focusing initially on the effects of alloying elements and temper on solution potential and how it compares to other metals. It then addresses the issue of intergranular corrosion and its role in SCC. It explains how factors such as stress loads, grain structure, and environment determine whether or not stress-corrosion cracking develops in a susceptible alloy. It also provides stress-corrosion ratings for many alloys, tempers, and product forms and includes information on hydrogen-induced cracking.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410315
EISBN: 978-1-62708-265-5
Abstract
This chapter describes the mechanical properties of fully pearlitic microstructures and their suitability for wire and rail applications. It begins by describing the ever-increasing demands placed on rail steels and the manufacturing methods that have been developed in response. It then explains how wire drawing, patenting, and the Stelmor process affect microstructure, and describes various fracture mechanisms and how they appear on steel wire fracture surfaces. The chapter concludes by discussing the effects of torsional deformation, delamination, galvanizing, and aging on patented and drawn wires.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480207
EISBN: 978-1-62708-318-8
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.9781627083058
EISBN: 978-1-62708-305-8
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720321
EISBN: 978-1-62708-305-8
Abstract
This chapter focuses on the inspection of steel bars for the detection and evaluation of flaws. The principles involved also apply, for the most part, to the inspection of steel wire. The nondestructive inspection methods discussed include magnetic particle inspection, liquid penetrant inspection, ultrasonic inspection, and electromagnetic inspection. Eddy current and magnetic permeability are also covered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720345
EISBN: 978-1-62708-305-8
Abstract
Wrought tubular products are nondestructively inspected chiefly by eddy current techniques (including the magnetic flux leakage technique) and by ultrasonic techniques. The methods discussed in this chapter include eddy current inspection, flux leakage inspection, ultrasonic inspection, magnetic particle inspection, liquid penetrant inspection, and radiographic inspection of resistance welded tubular products, seamless steel tubular products, and nonferrous tubular products. This chapter discusses the fundamental factors that should be considered in selecting a nondestructive inspection method and in selecting from among the commercially available inspection equipment. The factors covered are product characteristics, nature of the flaws, extraneous variables, rate of inspection, end effect, mill versus laboratory inspection, specification requirements, equipment costs, and operating costs.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720365
EISBN: 978-1-62708-305-8
Abstract
In forgings of both ferrous and nonferrous metals, the flaws that most often occur are caused by conditions that exist in the ingot, by subsequent hot working of the ingot or the billet, and by hot or cold working during forging. The inspection methods most commonly used to detect these flaws include visual, magnetic particle, liquid penetrant, ultrasonic, eddy current, and radiographic inspection. This chapter provides a detailed discussion on the characteristics, process steps, applications, advantages, and limitations of these methods. It also describes the flaws caused by the forging operation and the principal factors that influence the selection of a nondestructive inspection method for forgings.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.9781627083072
EISBN: 978-1-62708-307-2
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130133
EISBN: 978-1-62708-284-6
Abstract
This article presents six case studies of failures with steel forgings. The case studies covered are crankshaft underfill; tube bending; spade bit; trim tear; upset forging; and avoidance of flow through, lap, and crack. The case studies illustrate difficulties encountered in either cold forging or hot forging in terms of preforge factors and/or discontinuities generated by the forging process. Supporting topics that are discussed in the case studies include validity checks for buster and blocker design, lubrication and wear, mechanical surface phenomenon, forging process design, and forging tolerances. Wear, plastic deformation processes, and laws of friction are introduced as a group of subjects that have been considered in the case studies.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240095
EISBN: 978-1-62708-251-8
Abstract
Almost all metals and alloys are produced from liquids by solidification. For both castings and wrought products, the solidification process has a major influence on both the microstructure and mechanical properties of the final product. This chapter discusses the three zones that a metal cast into a mold can have: a chill zone, a zone containing columnar grains, and a center-equiaxed grain zone. Since the way in which alloys partition on freezing, it follows that all castings are segregated to different categories. The different types of segregation discussed include normal, gravity, micro, and inverse. The chapter also provides information on grain refinement and secondary dendrite arm spacing and porosity and shrinkage in castings. It concludes with a brief overview of six of the most important casting processes in industries: sand casting, plaster mold casting, evaporative pattern casting, investment casting, permanent mold casting, and die casting.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.9781627083423
EISBN: 978-1-62708-342-3
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980001
EISBN: 978-1-62708-342-3
Abstract
This chapter provides an overview of the basic principles and historic development of metal extrusion processes. It starts by illustrating the two major process categories: direct extrusion and indirect extrusion. It then briefly defines hydrostatic extrusion and the conform process. The history coverage addresses early patents for extrusion of lead at the turn of the 17th century up through the major process innovations in the 20th century.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980059
EISBN: 978-1-62708-342-3
Abstract
This chapter opens with a discussion of the classification of rod and tube extrusion processes. The standard processes involve hot working (extrusion at temperatures above room temperature), but some specialized cold working processes are also used for rod and tube extrusion. The next section reviews principles, variations, thermal conditions, axial load calculation, material flow, and applications of direct extrusion and indirect extrusion, with examples provided for extrusion of aluminum and copper alloys. Next, the chapter focuses on the process principles, advantages, and applications of conventional hydrostatic extrusion and thick film processes. This is followed by sections providing information on the special extrusion processes, namely conform process and cable sheathing. The chapter ends with a discussion on direct and indirect tube extrusion.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980141
EISBN: 978-1-62708-342-3
Abstract
This chapter explains the basic terminology and principles of metallurgy as they apply to extrusion. It begins with an overview of crystal structure in metals and alloys, including crystal defects and orientation. This is followed by sections discussing the development of the continuous cast microstructure of aluminum and copper alloys. The discussion provides information on billet and grain segregation and defects in continuous casting. The chapter then discusses the processes involved in the deformation of pure metals and alloys at room temperature. Next, it describes the characteristics of pure metals and alloys at higher temperatures. The processes involved in extrusion are then covered. The chapter provides details on how the toughness and fracture characteristics of metals and alloys affect the extrusion process. The weld seams in hollow profiles, the production of composite profiles, and the processing of composite materials, as well as the extrusion of metal powders, are discussed. The chapter ends with a discussion on the factors that define the extrudability of metallic materials and how these attributes are characterized.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980323
EISBN: 978-1-62708-342-3
Abstract
The machinery and equipment required for rod and tube extrusion is determined by the specific extrusion process. This chapter provides a detailed description of the design requirements and principles of machinery and equipment for direct and indirect hot extrusion. It then covers the presses and auxiliary equipment for tube extrusion, induction furnaces for billet processing, handling systems for copper and aluminum alloy products, extrusion cooling systems, and age-hardening ovens. Next, the chapter describes the principles and applications of equipment for the production of aluminum and copper billets. Then, it focuses on process control in both direct and indirect hot extrusion of aluminum alloys without lubrication. The chapter describes the technology of electrical and electronic controls in the extrusion process. It ends with a discussion on the factors that influence the productivity and quality of the products in the extrusion process and methods for process optimization.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540395
EISBN: 978-1-62708-309-6
1