Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-3 of 3
Rivets
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610263
EISBN: 978-1-62708-303-4
Abstract
This chapter discusses the fatigue behavior of bolted, riveted, and welded joints. It describes the relative strength of machined and rolled threads and the effect of thread design, preload, and clamping force on the fatigue strength of bolts made from different steels. It explains where fatigue failures are likely to occur in cold-driven rivet and friction joints, and why the fatigue strength of welded joints can be much lower than that of the parent metal, depending on weld shape, joint geometry, discontinuities, and residual stresses. The chapter also explains how to improve the fatigue life of welded joints and discusses the factors that can reduce the fracture toughness of weld metals.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230441
EISBN: 978-1-62708-298-3
Abstract
This chapter explains how to join beryllium parts using adhesive bonding and mechanical fastening techniques and discusses the advantages and disadvantages of each method. It describes the stresses that need to be considered when designing adhesive bonds, the benefits and limitations of different adhesives, and surface preparation requirements. It explains how adhesives are applied and cured and how curing times and temperatures affect bonding strength. It also discusses the use of bolts and rivets and the different types of joints that can be made with them.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270107
EISBN: 978-1-62708-301-0
Abstract
A helicopter lost the outboard rib on a tail rotor blade in flight and was forced to land because of the resulting vibrations. The investigation that followed is described in this chapter along with key findings. As shown in a sketch, the rib is held in place by a set of six rivets. All of the rivets on the failed blade were missing and sections of skin were torn from most of the rivet holes. One such rivet hole was examined in a SEM, revealing corrosion on one of the tear surfaces and dimples (characteristic of ductile overload failure) on the other. In addition, the inner surface of the skin nearest the rib was found to be coated with soot, the paint on the leading edge of the top skin was abraded, and the skin in that area had thinned. Based on their findings, investigators concluded that the outboard rib separated because of stress-corrosion cracking around the rivets, and erosion may have contributed.