Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-8 of 8
Low-carbon steel
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Low-Carbon Steels
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410233
EISBN: 978-1-62708-265-5
Abstract
This chapter discusses various alloying and processing approaches to increase the strength of low-carbon steels. It describes hot-rolled low-carbon steels, cold-rolled and annealed low-carbon steels, interstitial-free or ultra-low carbon steels, high-strength, low-alloy (HSLA) steels, dual-phase (DP) steels, transformation-induced plasticity (TRIP) steels, and martensitic low-carbon steels. It also discusses twinning-induced plasticity (TWIP) steels along with quenched and partitioned (Q&P) steels.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.9781627082655
EISBN: 978-1-62708-265-5
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400073
EISBN: 978-1-62708-316-4
Abstract
This chapter describes the formability and forming characteristics of low-carbon sheet steels, coated sheet steels, stainless steels, and aluminum and magnesium alloys. It provides property data as well as flow stress curves for numerous grades of each material and explains how composition, microstructure, and processing methods influence forming behaviors.
Book Chapter
Solid Solutions
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240041
EISBN: 978-1-62708-251-8
Abstract
When a metal is alloyed with another metal, either substitutional or interstitial solid solutions are usually formed. This chapter discusses the general characteristics of these solutions and the effects of several alloying elements on the yield strength of pure metals. It presents four rules that give a qualitative estimate of the ability of two metals to form substitutional solid solutions: relative size factor, chemical affinity factor, relative valency factor, and lattice type factor. The chapter provides information on alloys that form an ordered structure during heating. It describes the intermediate phases that are formed during solidification between the two extremes of substitutional solid solution on the one hand and intermetallic compound on the other. The chapter concludes with a section on strain aging in low-carbon steels that allows the interstitial atoms to diffuse to the dislocations and again form atmospheres that pin dislocation movement.
Book Chapter
Plain Carbon Steels
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240349
EISBN: 978-1-62708-251-8
Abstract
This chapter discusses various processes involved in the production of steel from raw materials to finished mill products. The processes include hot rolling, cold rolling, forging, extruding, or drawing. The chapter provides a detailed description of two main furnaces used for making steel: the electric arc furnace and the basic oxygen furnace. It also provides information on the classification and specifications for various steels, namely, plain carbon steels, low-carbon steels, medium-carbon plain carbon steels, and high-carbon plain carbon steels. The chapter concludes with a general overview of the factors influencing corrosion in iron and steel and a brief discussion of corrosion-resistant coatings.
Book Chapter
Boost/Diffuse Cycles for Carburizing
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440279
EISBN: 978-1-62708-262-4
Abstract
As the carburizing process has become more sophisticated and controllable, it also has become easy to change the carbon potential during the carburizing process. It is important that the change in the carbon potential be made at the right time in the overall cycle. This appendix discusses the advantages of boost/diffuse carburizing cycles. A table lists typical carburizing constants and boost/diffusion ratios needed to obtain a 0.80 to 0.90% surface carbon content in a low-alloy, low-carbon steel. A figure illustrates possible carbon penetration profiles from boost/diffuse cycles.
Book Chapter
Low-Carbon Irons and Steels
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.lmcs.t66560039
EISBN: 978-1-62708-291-4
Abstract
This chapter discusses the composition and structure of low-carbon irons and steels, particularly those used in the production of hot-rolled strip. It describes the manufacturing process from the production of ingots to coiling, and it explains how finishing and coiling temperatures affect ferritic grain size and the distribution of cementite particles. It also discusses subsequent processing, including cold rolling and annealing, and the parameters with the greatest impact on grain size and microstructure. In addition, it describes the production of enameling irons, the benefits of high-temperature heat treatments, and the effects of quench and strain aging.
Book Chapter
Low-Carbon Structural Steels
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.lmcs.t66560081
EISBN: 978-1-62708-291-4
Abstract
This chapter covers a broad range of low-carbon steels optimized for structural applications. Low-carbon structural steels are generally considered the highest-strength steels that can be welded without undue difficulty, even in the field. They include mild steels, carbon-manganese and niobium- and vanadium-containing steels, and high-strength low-alloy steels. Chapter 5 discusses the composition, microstructure, and properties of these workhorse materials and explains how to identify the cause of production-related issues such as lamellar tearing and ferrite-pearlite banding. It also describes some of the alloying variations that have been developed to improve machinability and the mechanisms by which they work.