Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-9 of 9
Adhesive wear
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300079
EISBN: 978-1-62708-323-2
Abstract
This chapter covers common types of erosion, including droplet, slurry, cavitation, liquid impingement, gas flow, and solid particle erosion, and major types of wear, including abrasive, adhesive, lubricated, rolling, and impact wear. It also covers special cases such as galling, fretting, scuffing, and spalling and introduces the concepts of tribocorrosion and biotribology.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300121
EISBN: 978-1-62708-323-2
Abstract
This chapter discusses the processes and procedures involved in tribotesting, the significance of test parameters and conditions, and practical considerations including test metrics and measurements and the interpretation of wear damage. It also describes the different types of erosion tests in use and common approaches for adhesive wear and abrasion testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630169
EISBN: 978-1-62708-270-9
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610461
EISBN: 978-1-62708-303-4
Abstract
This chapter discusses the causes and effects of wear along with prevention methods. It covers abrasive, erosive, erosion-corrosion, grinding, gouging, adhesive, and fretting wear. It also discusses various forms of contact-stress fatigue, including subsurface-origin fatigue, surface-origin fatigue, subcase-origin fatigue (spalling fatigue), and cavitation fatigue.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500317
EISBN: 978-1-62708-317-1
Abstract
This chapter discusses the types of failures that can occur in sheet metal forming tools and explains how to mitigate their effects. It describes the factors that influence galling and wear and the benefits of special treatments and coatings. It provides information on through hardening, case (surface) hardening, and nitriding as well as hard chrome plating, vapor deposition, and thermal diffusion coating. It explains how to measure wear resistance using various tests and provides guidelines for selecting tool materials, treatments, and coatings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060385
EISBN: 978-1-62708-261-7
Abstract
Durability is a generic term used to describe the performance of a material or a component made from that material in a given application. In order to be durable, a material must resist failure by wear, corrosion, fracture, fatigue, deformation, and exposure to a range of service temperatures. This chapter covers several types of component and material failure associated with wear, temperature effects, and crack growth. It examines temperature-induced, brittle, ductile, and fatigue failures as well as failures due to abrasive, erosive, adhesive, and fretting wear and cavitation fatigue. It also discusses preventative measures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270074
EISBN: 978-1-62708-301-0
Abstract
This chapter discusses the key findings of an investigation into the failure of an aircraft engine fuel pump. It explains how investigators came to the conclusion that metal slivers from a heavily worn spring may have interrupted the flow of lubricant to one of the slipper pads, causing adhesive wear and the welding of slipper pad material onto the surface of a mating cam plate. Excessive friction between the slipper pads and cam plate, in turn, created a torsional overload that caused the camshaft to break. The chapter presents SEM images showing the wear pattern on one of the springs along with photographs of the damaged slipper pads and cam plate. It also includes an image of a copper flake found in one of the pistons and discusses the results of qualitative x-ray chemical analysis.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780276
EISBN: 978-1-62708-281-5
Abstract
This article briefly reviews abrasive and adhesive wear failure of reinforced polymers and polymer composites, namely particulate-filled polymers, short-fiber-reinforced polymers, polymers with continuous fibers, and mixed reinforcements and fabrics. It includes scanning electron microscope micrographs of abraded surfaces of composites against 80-grade SiC paper and under 14 N load, and worn surfaces of abraded polyether-imide composites and polyamide 66 unidirectional composites and 66 hybrid composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2000
DOI: 10.31399/asm.tb.aet.t68260087
EISBN: 978-1-62708-336-2
Abstract
This chapter familiarizes readers with the design, configuration, and function of tooling and dies used to extrude aluminum alloys. It discuses basic design considerations, including the geometry, location, and orientation of die openings; allowances for thermal shrinkage, stretching, and deflection; and the length and profile of bearing surfaces. It outlines the steps and processes involved in die making, describes the selection and treatment of die materials, and examines the factors that influence friction and wear. It also discusses the general procedures for on-site die correction.