Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-5 of 5
Shrinkage
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220129
EISBN: 978-1-62708-259-4
Abstract
Many of the structural characteristics of steel products are a result of changes that occur during solidification, particularly volume contractions and solute redistribution. This chapter discusses the solidification process and how it affects the quality and behaviors of steel. It explains how steel shrinks as it solidifies, causing issues such as pipe and voids, and how differences in the solubility of solid and liquid steel lead to compositional heterogeneities or segregation. It describes the dendritic nature of solidification, peritectic and eutectic reactions, microporosity, macro- and microsegregation, and hot cracking, as well as the effects of solidification and remelting on castings, ingots, and continuous cast products. It explains how to determine where defects originate in continuous casters and how to control alumina, sulfide, and nitride inclusions.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420429
EISBN: 978-1-62708-310-2
Abstract
The solidification process has a major influence on the microstructure and mechanical properties of metal casting as well as wrought products. This appendix covers the fundamentals of solidification. It discusses the formation of solidification structures, the characteristics of planar, cellular, and dendritic growth, the basic freezing sequence for an alloy casting, and the variations in cooling rate, heat flow, and grain morphology in different areas of the mold. It also describes the types of segregation that occur during freezing, the effect of solidification rate on secondary dendrite arm spacing, and the factors that contribute to porosity and shrinkage.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240095
EISBN: 978-1-62708-251-8
Abstract
Almost all metals and alloys are produced from liquids by solidification. For both castings and wrought products, the solidification process has a major influence on both the microstructure and mechanical properties of the final product. This chapter discusses the three zones that a metal cast into a mold can have: a chill zone, a zone containing columnar grains, and a center-equiaxed grain zone. Since the way in which alloys partition on freezing, it follows that all castings are segregated to different categories. The different types of segregation discussed include normal, gravity, micro, and inverse. The chapter also provides information on grain refinement and secondary dendrite arm spacing and porosity and shrinkage in castings. It concludes with a brief overview of six of the most important casting processes in industries: sand casting, plaster mold casting, evaporative pattern casting, investment casting, permanent mold casting, and die casting.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200115
EISBN: 978-1-62708-354-6
Abstract
This chapter explains various aspects of the foundry process that the design engineer should consider when designing steel castings. It discusses special feeding aids, such as tapers, padding, ribs, and chills that may be used by foundry personnel to promote directional solidification. The chapter addresses the design of castings to reduce the occurrence of internal shrinkage. It provides a detailed discussion on design considerations for molding, cleaning, machining, and function.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200164
EISBN: 978-1-62708-354-6
Abstract
Pattern equipment is the tooling utilized to form the mold cavity of a casting. This chapter first discusses the following factors that should be considered for determining the type of pattern equipment: number of castings to be produced, mold processes to be employed, dimensional tolerances required, casting design, and pattern cost. It also discusses the factors that should be considered when engineering a pattern. The chapter then presents the types of materials used for pattern construction. It provides an overview of patternmaker's shrinkage allowance. Finally, the chapter presents the factors that govern the space requirements for pattern storage.