Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-9 of 9
Creep fracture
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430147
EISBN: 978-1-62708-253-2
Abstract
This chapter provides an outline of the failure modes and mechanisms associated with most boiler tube failures in coal-fired power plants. Primary categories include stress rupture failures, water-side corrosion, fire-side corrosion, fire-side erosion, fatigue, operation failures, and insufficient quality control.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630237
EISBN: 978-1-62708-270-9
Abstract
Elevated-temperature failures are the most complex type of failure because all of the modes of failures can occur at elevated temperatures (with the obvious exception of low-temperature brittle fracture). Elevated-temperature problems are real concerns in industrial applications. The principal types of elevated-temperature failure mechanisms discussed in this chapter are creep, stress rupture, overheating failure, elevated-temperature fatigue, thermal fatigue, metallurgical instabilities, and environmentally induced failure. The causes, features, and effects of these failures are discussed. The cooling techniques for preventing elevated-temperature failures are also covered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.sap.t53000133
EISBN: 978-1-62708-313-3
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060083
EISBN: 978-1-62708-343-0
Abstract
This chapter compares and contrasts empirical approaches for partitioning hysteresis loops and predicting creep-fatigue life. The first part of the chapter presents experimental partitioning methods, explaining how they can be used to partition any loading cycle into its basic strain-range components. The methods covered include rapid cycling between peak stress extremes, half-cycle rapid loading and unloading, and variations of the incremental step-stress approach. The methods are then compared based on their ability to predict creep-fatigue life. The chapter goes on from there to describe how fatigue life can be estimated from ductility measurements when cyclic data are unavailable or are likely to change. It also explains how cyclic life is influenced by the time-dependent nature of creep-plasticity and the physical and metallurgical effects of environmental exposure.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060021
EISBN: 978-1-62708-343-0
Abstract
This chapter focuses on creep-rupture failure, or more precisely, the time required for such a failure to occur at a given stress and temperature. It begins with a review of creep-rupture phenomena and the various ways creep-rupture data are presented and analyzed. It then examines a large collection of creep-rupture data corresponding to different alloy designations and heat treatments, identifying key relationships, similarities, and differences. It also presents a test method developed by the authors in which twelve materials are tested over a range of temperature, stress, and time in order to determine multiheat constants that are then used to fit multiheat data from other materials and thus estimate rupture times.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.9781627083430
EISBN: 978-1-62708-343-0
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930163
EISBN: 978-1-62708-359-1
Abstract
Depending on the operating environment and the nature of the applied loading, a structure can fail by a number of different modes, including brittle fracture, ductile fracture, plastic collapse, fatigue, creep, corrosion, and buckling. These failure modes can be broken down into the categories of fracture, fatigue, environmental cracking, and high-temperature creep. This article discusses each of these categories, as well as the benefits of a fitness-for-service approach.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490059
EISBN: 978-1-62708-340-9
Abstract
This chapter provides a detailed overview of the creep behavior of metals and how to account for it when determining the remaining service life of components. It begins with a review of creep curves, explaining how they are plotted and what they reveal about the operating history, damage mechanisms, and structural integrity of the test sample. In the sections that follow, it discusses the effects of stress and temperature on creep rate, the difference between diffusional and dislocation creep, and the use of time-temperature-stress parameters for data extrapolation. It explains how to deal with time dependent deformation in design, how to estimate cumulative damage under changing conditions, and how to assess the effect of multiaxial stress based on uniaxial test data. It also includes information on rupture ductility, creep fracture, and creep-crack growth and their effect on component life and performance.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.9781627083409
EISBN: 978-1-62708-340-9