Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 32
Corrosion fatigue
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430325
EISBN: 978-1-62708-253-2
Abstract
Boiler tubes subjected to cyclic or fluctuating loads over extended periods of time are prone to fatigue failure. Fatigue can occur at relatively low stresses and is implicated in almost 80% of the tube failures in firetube boilers. This chapter covers the most common forms of boiler tube fatigue, including mechanical or vibrational fatigue, corrosion fatigue, thermal fatigue, and creep-fatigue interaction. It discusses the causes, characteristics, and impacts of each type and provides several case studies.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030117
EISBN: 978-1-62708-282-2
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630211
EISBN: 978-1-62708-270-9
Abstract
This chapter outlines the major types of corrosion, their interactions, their complicating effects on fracture and wear, and some possible prevention methods. The types of corrosion considered in the chapter are galvanic corrosion, uniform corrosion, pitting corrosion, crevice corrosion, microbiologically influenced corrosion, stress-corrosion cracking, and corrosion fatigue.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610501
EISBN: 978-1-62708-303-4
Abstract
This chapter discusses common forms of corrosion, including uniform corrosion, galvanic corrosion, pitting, crevice corrosion, dealloying corrosion, intergranular corrosion, and exfoliation. It describes the factors that contribute to stress-corrosion cracking, hydrogen embrittlement, and corrosion fatigue and compares and contrasts their effects on mechanical properties, performance, and operating life. It also includes information on high-temperature oxidation and corrosion prevention techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240243
EISBN: 978-1-62708-251-8
Abstract
Fatigue failures occur due to the application of fluctuating stresses that are much lower than the stress required to cause failure during a single application of stress. This chapter describes three basic factors that cause fatigue: a maximum tensile stress of sufficiently high value, a large enough variation or fluctuation in the applied stress, and a sufficiently large number of cycles of the applied stress. The discussion covers high-cycle fatigue, low-cycle fatigue, and fatigue crack propagation. The chapter then discusses the stages where fatigue crack nucleation and growth occurs. It describes the most effective methods of improving fatigue life. The chapter also explains the effect of geometrical stress concentrations on fatigue. In addition, it explores the environmental effects of corrosion fatigue, low-temperature fatigue, high-temperature fatigue, and thermal fatigue. Finally, the chapter discusses a number of design philosophies or methodologies to deal with design against fatigue failures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240323
EISBN: 978-1-62708-251-8
Abstract
This chapter first covers some basic principles of electrochemical corrosion and then some of the various types of corrosion. Some of the more common types of corrosion discussed include uniform corrosion, galvanic corrosion, pitting, crevice corrosion, erosion-corrosion, cavitation, fretting corrosion, intergranular corrosion, exfoliation, dealloying corrosion, stress-corrosion cracking, and corrosion fatigue. The chapter discusses the processes involved in corrosion control by retarding either the anodic or cathodic reactions. The rate of corrosion is reduced by conditioning of the metal, by conditioning the environment, and by electrochemical control. Finally, the chapter deals with high-temperature oxidation that usually occurs in the absence of moisture.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540215
EISBN: 978-1-62708-309-6
Abstract
This chapter presents a fracture-mechanics-based approach to damage tolerance, accounting for mechanical, metallurgical, and environmental factors that drive crack development and growth. It begins with a review of stress-intensity factors corresponding to a wide range of crack geometries, specimen configurations, and loading conditions. The discussion covers two- and three-dimensional cracks as well as the use of correction factors and problem-simplification techniques for dealing with nonstandard configurations. The chapter goes on to describe how fatigue loading affects crack growth rates in each of the three stages of progression. Using images, diagrams, and data plots, it reveals how cracks advance in step with successive stress cycles and explains how fatigue crack growth rates can be determined by examining striations on fracture specimens and correlating their widths with stress profiles. It also describes how material-related factors, load history, corrosion, and temperature affect crack growth rates, and discusses the steps involved in life assessment.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940087
EISBN: 978-1-62708-302-7
Abstract
This chapter lays the groundwork for understanding electrode kinetics associated with corrosion. It presents a simple but useful theory relating kinetics to the polarization behavior of half-cell reactions. The theory is based on the observation that electrode potentials vary as a function of current density or charge transfer in a given area. The chapter explains how to measure and plot electrode potentials and currents and how to interpret the resulting polarization curves. It also discusses the effects of concentration gradients, explaining how they cause diffusion and, in some cases, produce changes in electrode potential.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940127
EISBN: 978-1-62708-302-7
Abstract
This chapter develops a corrosion model that accounts for solution potentials and the effects of coupling between cathodic and anodic reactions. It begins by examining potential differences at various points (in the solution) along a path from the anode to the cathode area. It then presents a simple model of a galvanically coupled electrode, in which the metal is represented as an array of anode and cathode reaction surfaces. The chapter goes on to develop the related theory of mixed electrodes, showing how it can be used to predict corrosion rates based on measured potentials and current densities, polarization characteristics, and physical variables such as anode-to-cathode area ratios and fluid velocity. It also discusses the effect of corrosion inhibitors, galvanic coupling, and external currents, making extensive use of polarization curves.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940233
EISBN: 978-1-62708-302-7
Abstract
This chapter discusses the principles and procedures of electrochemical measurements used to investigate corrosion behaviors. It begins by presenting a diagram of a basic potentiostatic circuit, which consists of a working electrode and an auxiliary or counter electrode suspended in an electrolytic solution. It describes how corrosion potentials and current densities are measured and explains how to deal with various sources of error. It also explains how electrochemical impedance measurements are used and describes the underlying theory and procedures in some detail.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940001
EISBN: 978-1-62708-302-7
Abstract
This chapter familiarizes readers with the basic concepts of corrosion, discussing chemical reactions, ion transfer mechanisms, electrochemical processes and variables, and the formation of solid corrosion products. It presents a simple but effective teaching tool, the elementary electrochemical corrosion circuit, using it to explain how electric potential differences drive the corrosion process and how corrosion rates vary in proportion to current density. The chapter concludes with a discussion on the importance of corrosion products, such as oxides and hydroxides, and how their formation can be a major factor in controlling corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940023
EISBN: 978-1-62708-302-7
Abstract
This chapter provides a thorough introduction to the electrochemical thermodynamics that govern electrode reactions associated with corrosion. It begins with a review of the thermodynamic criteria for the stability of chemical reactions based on Gibbs free energy and explains how energies of formation are determined using the oxidation of iron as an example. It then considers how iron reacts with hydrochloric acid, explaining how it can be expressed as two half reactions modeled as electrodes in an electrochemical cell. It goes on to describe the chemical reactions occurring at each electrode, accounting for different variables, mechanisms, and electrochemical effects. The chapter concludes with an in-depth review of Pourbaix diagrams, explaining what they reveal about the stability of metal-water systems and the formation of corrosion products.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940183
EISBN: 978-1-62708-302-7
Abstract
This chapter discusses the complex polarization characteristics of active-passive metals and addresses related problems in interpreting their corrosion behavior. It begins by presenting several experimentally derived polarization curves for iron, comparing and contrasting them with the iron-water Pourbaix diagram. It then explains how anodic polarization is extremely sensitive to the environment and, as a result, a reasonably complete curve for a given metal-environment system usually can only be inferred. It goes on to describe how such curves are constructed, demonstrating the procedures for a wide range of alloys and environments. The examples also show how factors such as alloy concentration, crystal lattice orientation, temperature, and dissolved oxygen affect corrosion behavior.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940271
EISBN: 978-1-62708-302-7
Abstract
This chapter is a detailed study of the localized corrosion behavior of steel, copper, and aluminum alloys. It applies the basic principles of electrochemistry, as well as materials science and solid and fluid mechanics, to explain the causes and effects of pitting, crevice corrosion, stress corrosion cracking, and corrosion fatigue. It describes the underlying mechanisms associated with each process and how they relate to the microstructure of the metal or alloy, the physical condition of the surface, and other factors such as the coupling of the metal to a dissimilar metal or surface film.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940451
EISBN: 978-1-62708-302-7
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.9781627083027
EISBN: 978-1-62708-302-7
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870001
EISBN: 978-1-62708-299-0
Abstract
Aluminum is the second most widely used metal in the world. It is readily available, offers a wide range of properties, and can be shaped, coated, and joined using a variety of methods. This chapter discusses some of the key attributes of wrought and cast aluminum alloys and the classifications, designations, and grades of available product forms. It also explains how aluminum alloys are used in aerospace, automotive, rail, and marine applications as well as in building and construction, electrical products, manufacturing equipment, packaging, and consumer durables such as appliances and furniture.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870025
EISBN: 978-1-62708-299-0
Abstract
Aluminum generally has excellent resistance to corrosion and gives years of maintenance-free service in natural atmospheres, fresh waters, seawater, many soils and chemicals, and most foods. This chapter explains why aluminum and aluminum alloys are naturally resistant to corrosion and describes the conditions and circumstances under which their natural defenses break down. It discusses the causes and forms of corrosion observed in aluminum alloys and the effect of composition, microstructure, processing history, and environmental variables such as impurities, fluid flow, surface area, pressure, and temperature.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870045
EISBN: 978-1-62708-299-0
Abstract
Pitting is the most common corrosion attack on aluminum alloy products. This chapter explains why pitting occurs and how it appears in different types of aluminum. It discusses pitting rates, pitting potentials, and pitting resistance as well as testing and prevention methods. It also discusses the problem of crevice corrosion and how it is influenced by crevice geometry and operating environment. The discussion covers the most common forms of crevice corrosion, including water staining, poultice corrosion, and filiform corrosion, along with related testing and prevention methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870063
EISBN: 978-1-62708-299-0
Abstract
This chapter describes the mechanisms, characteristics, and prevention of intergranular and exfoliation corrosion in various aluminum alloys. It discusses susceptible alloys and recommended tempers and presents several examples of exfoliation in aircraft components. It also explains how the two forms of corrosion are related to stress-corrosion cracking.