Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 46
Erosion corrosion
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300079
EISBN: 978-1-62708-323-2
Abstract
This chapter covers common types of erosion, including droplet, slurry, cavitation, liquid impingement, gas flow, and solid particle erosion, and major types of wear, including abrasive, adhesive, lubricated, rolling, and impact wear. It also covers special cases such as galling, fretting, scuffing, and spalling and introduces the concepts of tribocorrosion and biotribology.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430204
EISBN: 978-1-62708-253-2
Abstract
This chapter discusses the effects of corrosion on boiler tube surfaces exposed to water and steam. It describes the process of corrosion, the formation of scale, and the oxides of iron from which it forms. It addresses the primary types of corrosion found in boiler environments, including general corrosion, under-deposit corrosion, microbially induced corrosion, flow-accelerated corrosion, stress-assisted corrosion, erosion-corrosion, cavitation, oxygen pitting, stress-corrosion cracking, and caustic embrittlement. The discussion is supported by several illustrations and relevant case studies.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030117
EISBN: 978-1-62708-282-2
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030215
EISBN: 978-1-62708-282-2
Abstract
This chapter outlines the step-by-step processes by which materials are selected in order to prevent or control corrosion and includes information on materials that are resistant to the various forms of corrosion. The various forms of corrosion covered are general (uniform) corrosion, localized corrosion, galvanic corrosion, intergranular corrosion, stress-corrosion cracking, hydrogen damage, and erosion-corrosion. In addition, the economic importance of cost-effective materials selection is also considered.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030292
EISBN: 978-1-62708-282-2
Abstract
This chapter presents the primary considerations and mechanisms for corrosion and how they are involved in the selection of materials for process equipment in petroleum refineries and petrochemical plants. In addition, specific information on mechanical properties, corrosion, sulfide stress cracking, hydrogen-induced cracking, stress-oriented hydrogen-induced cracking, hydrogen embrittlement cracking, stress-corrosion cracking, velocity-accelerated corrosion, erosion-corrosion, and corrosion control is provided.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610461
EISBN: 978-1-62708-303-4
Abstract
This chapter discusses the causes and effects of wear along with prevention methods. It covers abrasive, erosive, erosion-corrosion, grinding, gouging, adhesive, and fretting wear. It also discusses various forms of contact-stress fatigue, including subsurface-origin fatigue, surface-origin fatigue, subcase-origin fatigue (spalling fatigue), and cavitation fatigue.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310257
EISBN: 978-1-62708-286-0
Abstract
This chapter focuses on the applications of stainless steels in chemical and process industry, covering what data are necessary and how they can be found. It begins with an overview of single- and dual-environment systems and the corrosion issues they face. This is followed by a discussion on the causes of the various forms of corrosion associated with liquids, namely pitting corrosion, crevice corrosion, intergranular corrosion, stress corrosion cracking, and erosion corrosion. The chapter also contains tables listing corrosion rates of sulfuric acid and fuming sulfuric acid. It ends with a section providing information on specific environments against which stainless steels are resistant to select for use in the chemical process industries.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240323
EISBN: 978-1-62708-251-8
Abstract
This chapter first covers some basic principles of electrochemical corrosion and then some of the various types of corrosion. Some of the more common types of corrosion discussed include uniform corrosion, galvanic corrosion, pitting, crevice corrosion, erosion-corrosion, cavitation, fretting corrosion, intergranular corrosion, exfoliation, dealloying corrosion, stress-corrosion cracking, and corrosion fatigue. The chapter discusses the processes involved in corrosion control by retarding either the anodic or cathodic reactions. The rate of corrosion is reduced by conditioning of the metal, by conditioning the environment, and by electrochemical control. Finally, the chapter deals with high-temperature oxidation that usually occurs in the absence of moisture.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080001
EISBN: 978-1-62708-304-1
Abstract
This chapter outlines the topics covered in the book and explains why and to whom the book was written. The book is intended for engineers, metallurgists, and failure analysts who work with materials and components that operate in high-temperature corrosive environments. It covers eight basic modes of high-temperature corrosion as well as the effect of external and residual stresses. It also provides an extensive amount of engineering data associated primarily with commercial alloys.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080003
EISBN: 978-1-62708-304-1
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080445
EISBN: 978-1-62708-304-1
Abstract
This appendix is a collection of tables listing the chemical compositions of wrought ferritic steels; wrought stainless steels; cast corrosion- and heat-resistant alloys; wrought iron-, nickel-, and cobalt-base alloys; cast nickel- and cobalt-base alloys; oxide-dispersion-strengthened alloys; and iron-, nickel- and cobalt-base filler metals.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080005
EISBN: 978-1-62708-304-1
Abstract
Many metallic components, such as retorts in heat treat furnaces, furnace heater tubes and coils in chemical and petrochemical plants, waterwalls and reheater tubes in boilers, and combustors and transition ducts in gas turbines, are subject to oxidation. This chapter explains how oxidation affects a wide range of engineering alloys from carbon and Cr-Mo steels to superalloys. It discusses the kinetics and thermodynamics involved in the formation of oxides and the effect of surface and bulk chemistry. It provides oxidation data for numerous alloys and intermetallics in terms of weight gain, metal loss, depth of attack, and oxidation rate. It also discusses the effect of metallurgical and environmental factors such as oxygen concentration, high-velocity combustion gas streams, chromium depletion and breakaway, component thickness, and water vapor.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080067
EISBN: 978-1-62708-304-1
Abstract
Oxidation usually dominates high-temperature corrosion reactions, but under certain conditions, some alloys may be affected by nitridation as well. This chapter explains why nitridation occurs and how it attacks various metals, in some cases, penetrating deeper than oxidation. It provides images and data describing the nitridation process and its effects on metals and alloys in high-temperature air as well as NH3-H2O, NH3 and H2-N2-NH3, and N2 environments. It also includes test data showing that nitridation is more severe in a nitrogen atmosphere than an ammonia environment at 1090 °C (2000 °F).
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080097
EISBN: 978-1-62708-304-1
Abstract
This chapter discusses the conditions under which carburization and metal dusting occur. It describes the chemical reactions and thermodynamic relationships that drive carburization and metal dusting attack and the factors that determine the amount of damage that metals and alloys are likely to sustain. The chapter also explains how carburization affects creep strength and fracture toughness, and how surface conditions and finish and the presence of sulfur affect metal dusting behaviors.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080147
EISBN: 978-1-62708-304-1
Abstract
Alloys containing elements that form volatile or low-melting-point halides are susceptible to high-temperature corrosion attack. This chapter explains how to determine whether such phases are likely to form, and the rate at which they occur, based on thermodynamic data and phase stability diagrams. It provides an extensive amount of high-temperature corrosion data for metals and alloys in gaseous environments containing chlorine and hydrogen chloride; fluorine and hydrogen fluoride; bromine and hydrogen bromide; and iodine and hydrogen iodide.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080201
EISBN: 978-1-62708-304-1
Abstract
Sulfur is one of the most common corrosive contaminants in high-temperature industrial environments and its presence can cause a number of problems, including sulfidation. This chapter describes the sulfidation behavior of a wide range of alloys as observed in three types of industrial environments. One environment consists of sulfur vapor, hydrocarbon streams, H2S, and H2-H2S gas; sulfides are the only corrosion products that form under these conditions. Another environment consists of H2, CO, CO2, H2S, and other gases, causing the formation of oxides as well as sulfides in most alloys. The third environment, for which less data exists, contains either SO2 or O2-SO2 mixtures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080235
EISBN: 978-1-62708-304-1
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080249
EISBN: 978-1-62708-304-1
Abstract
This chapter examines the hot corrosion resistance of various nickel- and cobalt-base alloys in gas turbines susceptible to high-temperature (Type I) and low-temperature (Type II) hot corrosion. Type I hot corrosion is typically characterized by a thick, porous layer of oxides with the underlying alloy matrix depleted in chromium, followed (below) by internal chromium-rich sulfides. Type II hot corrosion is characterized by pitting with little or no internal attack underneath. As the chapter explains, chromium additions make alloys more resistant to all types of hot corrosion attacks.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080259
EISBN: 978-1-62708-304-1
Abstract
This chapter discusses material-related problems associated with coal-fired burners. It explains how high temperatures affect heat-absorbing surfaces in furnace combustion areas and in the convection pass of superheaters and reheaters. It describes how low-NOx combustion technology, intended to reduce NOx emissions, accelerates tube wall wastage. It also covers circumferential cracking in furnace waterwalls, thermal fatigue cracking induced by waterlances and water cannons, superheater-reheater corrosion, and erosion in fluidized-bed boilers.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080321
EISBN: 978-1-62708-304-1
Abstract
Fireside corrosion can be a serious problem in oil-fired boilers and in refinery furnaces fired with low-grade fuels. This chapter provides an overview of fireside or oil-ash corrosion and the problems it can cause in utility power boilers and petrochemical refinery furnaces. It explains how oil-ash corrosion affects waterwalls, superheaters, and reheaters as well as metal tube supports and hangers.
1