Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 22
Crevice corrosion
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030039
EISBN: 978-1-62708-282-2
Abstract
This chapter provides a detailed account of crevice corrosion of metals. It begins by describing various critical factors influencing crevice corrosion. This is followed by a section presenting selected examples of crevice corrosion of stainless steel, nickel alloys, aluminum alloys, and titanium alloys in different environments. Methods that have been developed for differentiating and ranking the resistance of alloys toward crevice corrosion are then reviewed. The chapter concludes by discussing various strategies for the prevention of crevice corrosion, namely design awareness, use of inhibitors, and potential control methods.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030176
EISBN: 978-1-62708-282-2
Abstract
Stainless steels and nickel-base alloys are recognized for their resistance to general corrosion and other categories of corrosion. This chapter examines the effects of specific alloying elements, metallurgical structure, and mechanical conditioning on the corrosion resistance of these alloys. Some categories of corrosion covered are pitting, crevice, intergranular, stress-corrosion cracking, general, and high-temperature corrosion.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.9781627082822
EISBN: 978-1-62708-282-2
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480331
EISBN: 978-1-62708-318-8
Abstract
This chapter discusses the corrosion behavior of titanium, the types of corrosion that can occur, and the effect of alloying on corrosion resistance. It explains that, due to its tenacious oxide film, titanium has excellent corrosion resistance in oxidizing environments and that the resistance can be extended into the “reducing-acid” region by adding a small amount of palladium. It describes how different grades of titanium respond to different forms of attack, including uniform, crevice, and galvanic corrosion. It also identifies applications where corrosion is often a concern.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630211
EISBN: 978-1-62708-270-9
Abstract
This chapter outlines the major types of corrosion, their interactions, their complicating effects on fracture and wear, and some possible prevention methods. The types of corrosion considered in the chapter are galvanic corrosion, uniform corrosion, pitting corrosion, crevice corrosion, microbiologically influenced corrosion, stress-corrosion cracking, and corrosion fatigue.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610501
EISBN: 978-1-62708-303-4
Abstract
This chapter discusses common forms of corrosion, including uniform corrosion, galvanic corrosion, pitting, crevice corrosion, dealloying corrosion, intergranular corrosion, and exfoliation. It describes the factors that contribute to stress-corrosion cracking, hydrogen embrittlement, and corrosion fatigue and compares and contrasts their effects on mechanical properties, performance, and operating life. It also includes information on high-temperature oxidation and corrosion prevention techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060369
EISBN: 978-1-62708-261-7
Abstract
Corrosion can be defined as a chemical or electrochemical reaction between a material and its environment that causes the material and its properties to degrade. In most cases, it refers to the electrochemical oxidation of metals accompanied by the production of oxides or salts of the base material. This chapter discusses the process of corrosion and how to prevent or mitigate its effects. It describes several forms of corrosion, including uniform, intergranular, pitting, crevice, and stray-current corrosion, and the effects of stress-corrosion cracking, corrosion fatigue, and selective leaching. It discusses the use of corrosion inhibitors, cathodic and anodic protection, pH control, and Pourbaix diagrams.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310027
EISBN: 978-1-62708-286-0
Abstract
This chapter explores the behavior of stainless steel in media that promote corrosion. The forms of corrosion covered are uniform corrosion, atmospheric corrosion, localized corrosion, pitting corrosion, crevice corrosion, and grain boundary corrosion. The chapter discusses the influence of material and environmental variables on stress-corrosion cracking (SCC) and the mechanisms proposed for SCC in stainless steel, comparing the mechanism of SCC with hydrogen embrittlement. In addition, it provides information on biocorrosion and microbiologically induced corrosion in ambient aqueous environments.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310091
EISBN: 978-1-62708-286-0
Abstract
This chapter provides information on the structure, design aspects, mechanical properties, forming, machining, and corrosion resistance characteristics of duplex stainless steels. The different types of corrosion covered are general corrosion, pitting corrosion, crevice corrosion, and stress corrosion cracking.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310257
EISBN: 978-1-62708-286-0
Abstract
This chapter focuses on the applications of stainless steels in chemical and process industry, covering what data are necessary and how they can be found. It begins with an overview of single- and dual-environment systems and the corrosion issues they face. This is followed by a discussion on the causes of the various forms of corrosion associated with liquids, namely pitting corrosion, crevice corrosion, intergranular corrosion, stress corrosion cracking, and erosion corrosion. The chapter also contains tables listing corrosion rates of sulfuric acid and fuming sulfuric acid. It ends with a section providing information on specific environments against which stainless steels are resistant to select for use in the chemical process industries.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240323
EISBN: 978-1-62708-251-8
Abstract
This chapter first covers some basic principles of electrochemical corrosion and then some of the various types of corrosion. Some of the more common types of corrosion discussed include uniform corrosion, galvanic corrosion, pitting, crevice corrosion, erosion-corrosion, cavitation, fretting corrosion, intergranular corrosion, exfoliation, dealloying corrosion, stress-corrosion cracking, and corrosion fatigue. The chapter discusses the processes involved in corrosion control by retarding either the anodic or cathodic reactions. The rate of corrosion is reduced by conditioning of the metal, by conditioning the environment, and by electrochemical control. Finally, the chapter deals with high-temperature oxidation that usually occurs in the absence of moisture.
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820043
EISBN: 978-1-62708-339-3
Abstract
Austenitic stainless steels exhibit a single-phase, face-centered cubic structure that is maintained over a wide range of temperatures. This chapter provides a basic understanding of grade designations, properties, and welding considerations of austenitic stainless steels. It also discusses general types of corrosive attack and their effects on service integrity as well as detection and control measures. The five corrosive attack mechanisms covered are intergranular corrosion, preferential attack associated with weld metal precipitates, pitting and crevice corrosion, stress-corrosion cracking, and microbiologically influenced corrosion.
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820203
EISBN: 978-1-62708-339-3
Abstract
This chapter addresses in-service monitoring and corrosion testing of weldments. Three categories of corrosion monitoring are discussed: direct testing of coupons, electrochemical techniques, and nondestructive testing techniques. The majority of the test methods for evaluating corrosion of weldments are used to assess intergranular corrosion of stainless steels and high-nickel alloys. Other applicable tests evaluate pitting and crevice corrosion, stress-corrosion cracking, and microbiologically influenced corrosion. Each of these test methods is reviewed in this chapter.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120123
EISBN: 978-1-62708-269-3
Abstract
Titanium and its alloys are used chiefly for their high strength-to-weight ratio, but they also have excellent corrosion resistance, better even than stainless steels. Titanium, as the chapter explains, is protected by a tenacious oxide film that forms rapidly on exposed surfaces. The chapter discusses the factors that influence the growth and quality of this naturally passivating film, particularly the role of oxidizing and inhibiting species, temperature, and alloying elements. It also discusses the effect of different corrosion processes and environments as well as hydrogen, stress-corrosion cracking, liquid metal embrittlement, and surface treatments.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940271
EISBN: 978-1-62708-302-7
Abstract
This chapter is a detailed study of the localized corrosion behavior of steel, copper, and aluminum alloys. It applies the basic principles of electrochemistry, as well as materials science and solid and fluid mechanics, to explain the causes and effects of pitting, crevice corrosion, stress corrosion cracking, and corrosion fatigue. It describes the underlying mechanisms associated with each process and how they relate to the microstructure of the metal or alloy, the physical condition of the surface, and other factors such as the coupling of the metal to a dissimilar metal or surface film.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.9781627083027
EISBN: 978-1-62708-302-7
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910099
EISBN: 978-1-62708-250-1
Abstract
Corrosion problems can be divided into eight categories based on the appearance of the corrosion damage or the mechanism of attack: uniform or general corrosion; pitting corrosion; crevice corrosion, including corrosion under tubercles or deposits, filiform corrosion, and poultice corrosion; galvanic corrosion; erosion-corrosion, including cavitation erosion and fretting corrosion; intergranular corrosion, including sensitization and exfoliation; dealloying; environmentally assisted cracking, including stress-corrosion cracking, corrosion fatigue, and hydrogen damage (including hydrogen embrittlement, hydrogen-induced blistering, high-temperature hydrogen attack, and hydride formation). All these forms are addressed in this chapter in the context of aqueous corrosion. For each form, a general description is provided along with information on the causes and the list of metals that can be affected, with particular emphasis on the recognition and prevention measures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910301
EISBN: 978-1-62708-250-1
Abstract
The design process is the first and most important step in corrosion control. Major savings in operating costs are possible by anticipating corrosion problems so as to provide proper design for equipment before assembly or construction begins. This chapter describes the role of the design team in producing a successful final design, general considerations in corrosion-control design, and design details that accelerate corrosion. The details that must be considered when attempting to control corrosion by design include plant/site location, plant environment, component/assembly shape, fluid movement, surface preparation and coating procedures, and compatibility, insulation, and stress considerations. Design solutions for specific forms of corrosion, namely crevice corrosion, galvanic corrosion, erosion-corrosion, and stress-corrosion cracking, are then considered. A brief section is devoted to the discussion on corrosion allowance used for steel parts subject to uniform corrosion. Finally, the chapter describes the design considerations for using weathering steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910331
EISBN: 978-1-62708-250-1
Abstract
The challenge of materials selection is to achieve adequate performance at the lowest possible cost. Corrosion resistance is not the only property to be considered in making materials selections. Typical requirements and some of the procedures involved in making a selection and some of the factors that must be considered when determining the corrosion performance of a given material are listed in this chapter. The various steps that might be included in a materials selection process are then examined. These include a review of operating conditions and design, the selection of candidate materials, the in-depth evaluation of each candidate material, fabrication requirements, follow-up monitoring, and final materials selection. Material considerations such as cost, materials properties, and processing and fabrication requirements are subsequently covered. Finally, the chapter provides information on materials selection under general corrosion conditions and under conditions of localized corrosion forms such as pitting, crevice corrosion, and stress-corrosion cracking.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870045
EISBN: 978-1-62708-299-0
Abstract
Pitting is the most common corrosion attack on aluminum alloy products. This chapter explains why pitting occurs and how it appears in different types of aluminum. It discusses pitting rates, pitting potentials, and pitting resistance as well as testing and prevention methods. It also discusses the problem of crevice corrosion and how it is influenced by crevice geometry and operating environment. The discussion covers the most common forms of crevice corrosion, including water staining, poultice corrosion, and filiform corrosion, along with related testing and prevention methods.
1