Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-4 of 4
Hot corrosion
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430290
EISBN: 978-1-62708-253-2
Abstract
Fossil fuels produce many byproducts that, if not fully combusted, put boiler tubes at risk. Fuel ash, chemical residues, and process heat pose the greatest threat and are the primary contributors to fireside corrosion. This chapter covers various types of fireside corrosion such as waterwall, fuel ash, and hot corrosion, acid dew-point or cold-end corrosion, and polythionic acid corrosion. It also addresses stress corrosion cracking and includes relevant case studies.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030025
EISBN: 978-1-62708-282-2
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080249
EISBN: 978-1-62708-304-1
Abstract
This chapter examines the hot corrosion resistance of various nickel- and cobalt-base alloys in gas turbines susceptible to high-temperature (Type I) and low-temperature (Type II) hot corrosion. Type I hot corrosion is typically characterized by a thick, porous layer of oxides with the underlying alloy matrix depleted in chromium, followed (below) by internal chromium-rich sulfides. Type II hot corrosion is characterized by pitting with little or no internal attack underneath. As the chapter explains, chromium additions make alloys more resistant to all types of hot corrosion attacks.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280287
EISBN: 978-1-62708-267-9
Abstract
Superalloys tend to operate in environments where they are subjected to high-temperature corrosion, oxidation, and the erosive effects of hot gases. This chapter discusses the nature of these attacks and the effectiveness of various protection methods. It describes the primary forms of oxidation, the development of protective oxides, and the conditions associated with mixed gas corrosion and hot corrosion attack. It discusses oxidation and corrosion testing, the equipment used, and various ways to present the associated data. It describes the effect of gaseous oxidation on different alloys, discusses the formation of oxide scale in the presence of mixed gases, and explains how alloy composition contributes to oxide growth. The chapter discusses the underlying chemistry of hot corrosion, how to identify its effects, and how it progresses under various conditions. It also discusses protective coatings, including aluminide diffusion, overlay, and thermal barrier types, and how they perform in different environments based on their ability to tolerate strain.