Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 49
Crystal structure
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 August 2023
DOI: 10.31399/asm.tb.mdsbktmse.t56070007
EISBN: 978-1-62708-451-2
Abstract
The appendix contains detailed simulation examples through which readers learn how to format and analyze problems using the LAMMPS molecular dynamics simulator. By means of simulation, readers will determine the thermal expansion coefficient of copper, generate stress-strain plots for aluminum at different temperatures, calculate the surface energy of copper for different crystal orientations, investigate diffusion effects in BCC iron, estimate the sliding friction between graphene layers, compare the stacking fault energy of silver and aluminum, and analyze the properties and behaviors of liquids and gases. All examples employ a systematic problem-solving approach and include necessary input code.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2022
DOI: 10.31399/asm.tb.dsktmse.t56050001
EISBN: 978-1-62708-432-1
Abstract
A working knowledge of diffusion is necessary to understand and predict the behavior of metals and alloys during manufacturing and in certain types of service. This chapter covers the fundamentals of diffusion in solids and some of the applications in which diffusion plays a role. It discusses the mechanisms behind interstitial, substitutional, grain boundary, and surface diffusion, the derivation and use of Fick’s laws, and the basic principles of diffusion coating processes, including carburizing, nitriding, nitrocarburizing, cyaniding, carbonitriding, boriding, aluminizing, siliconizing, chromizing, vanadizing, and titanizing. It also discusses diffusion bonding and presents several approaches for dealing with oxide barrier problems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2022
DOI: 10.31399/asm.tb.dsktmse.t56050031
EISBN: 978-1-62708-432-1
Abstract
This chapter familiarizes readers with the use of Fick’s laws of diffusion in heat treating, coating, and other metallurgical processes. It contains worked solutions to nearly 30 problems requiring the calculation of activation energy, diffusion coefficient, concentration level, surface layer thickness, case depth, and processing time and temperature. The selected problems deal with various types of iron, steel, and nonferrous alloys and processes ranging from aluminizing, chromizing, carburizing, and plasma nitriding to hydrogen dissipation, decarburizing, and oxidation. A few diffusion problems involving single-crystal silicon are also included.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2022
DOI: 10.31399/asm.tb.mbheaktmse.t56030001
EISBN: 978-1-62708-418-5
Abstract
This chapter summarizes the progress that has been made in the study of high-entropy alloy (HEA) systems and the process-structure-property relationships that define them. It describes the various ways HEAs can be strengthened and explains how alloying elements influence tensile and yield strength, fracture toughness, and fracture strength. It discusses the stages of plastic deformation in HEAs and the role of dislocations and twinning in the evolution of microstructure. It reviews some of the work that has been done on fatigue behaviors and the methods developed to assess fatigue performance. It discusses the influence of defects on fatigue life, the effect of temperature and grain size on fatigue-crack propagation, and the role of nanotwinning in crack-growth retardation. It describes the methods used to produce HEAs in bulk and powder form and to apply them as protective coatings and films. It also identifies potential applications based on properties such as strength, hardness, density, wear resistance, high-temperature stability, and biocompatibility.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2022
DOI: 10.31399/asm.tb.mbheaktmse.t56030021
EISBN: 978-1-62708-418-5
Abstract
This chapter, presented in a question-and-answer format, covers many practical aspects of high-entropy alloys (HEAs). It provides clear and concise answers to more than 50 questions, imparting knowledge on alloying elements, heat treatments, diffusion mechanisms, phase formation, lattice distortion, crystal and grain structures, structure-property relationships, microstructure control, and characterization methods. It likewise explains how to calculate the effect of strengthening processes on the mechanical properties of HEAs and offers insights on how to balance strength, ductility, and density for specific applications. It also provides information on twinning behaviors, stacking faults, elastic properties, coating and film deposition methods, manufacturing challenges, and the use of computational techniques for alloy design.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320031
EISBN: 978-1-62708-332-4
Abstract
This chapter discusses the crystal structures of steel and cast iron, the iron-iron carbide equilibrium diagram, microconstituents or phases in the iron-iron carbide phase diagram, the iron-carbon carbide-silicon equilibrium diagram of cast irons, and the influence on microstructure by base elements and alloying elements. Graphitization, cooling rates, and heat treatment effects are covered. There also is discussion on inoculation benefits, flake graphite types and typical applications, evolution of cast iron types, ASTM specification A247 for graphite shapes, and selection of the best molding process. A large table lists typical material choices for various applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2021
DOI: 10.31399/asm.tb.ciktmse.t56020001
EISBN: 978-1-62708-389-8
Abstract
Alloying, heat treating, and work hardening are widely used to control material properties, and though they take different approaches, they all focus on imperfections of one type or other. This chapter provides readers with essential background on these material imperfections and their relevance in design and manufacturing. It begins with a review of compositional impurities, the physical arrangement of atoms in solid solution, and the factors that determine maximum solubility. It then describes different types of structural imperfections, including point, line, and planar defects, and how they respond to applied stresses and strains. The chapter makes extensive use of graphics to illustrate crystal lattice structures and related concepts such as vacancies and interstitial sites, ion migration, volume expansion, antisite defects, edge and screw dislocations, slip planes, twinning planes, and dislocation passage through precipitates. It also points out important structure-property correlations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2021
DOI: 10.31399/asm.tb.ciktmse.t56020013
EISBN: 978-1-62708-389-8
Abstract
This chapter provides readers with worked solutions to more than 25 problems related to compositional impurities and structural defects. The problems deal with important issues and challenges such as the design of low-density steels, the causes and effects of distortion in different crystal structures, the ability to predict the movement of dislocations, the influence of impurities on defects, the relationship between gain size and material properties, the identification of specific types of defects, the selection of compatible metals for vacuum environments, and the effect of twinning planes on stacking sequences. The chapter also includes problems on how the formation of precipitates can produce slip planes and how grain boundaries can act as obstacles to dislocation motion.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2021
DOI: 10.31399/asm.tb.ciktmse.9781627083898
EISBN: 978-1-62708-389-8
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310001
EISBN: 978-1-62708-326-3
Abstract
The building block of all matter, including metals, is the atom. This chapter initially provides information on atomic bonding and the crystal structure of metals and alloys, followed by a description of three crystal lattice structures of metals: face-centered cubic, hexagonal close-packed, and body-centered cubic. It then describes the four main divisions of crystal defects, namely point defects, line defects, planar defects, and volume defects. The chapter provides information on grain boundaries of metals, processes involved in atomic diffusion, and key properties of a solid solution. It also explains the aspects of a phase diagram that shows what phase or phases are present in the alloy under conditions of thermal equilibrium. Finally, a discussion on the applications of equilibrium phase diagrams is presented.
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.9781627083263
EISBN: 978-1-62708-326-3
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220403
EISBN: 978-1-62708-259-4
Abstract
With cold work, mechanical strength (measured either by yield strength or ultimate tensile strength) increases and ductility (measured by elongation, reduction of area, or fracture toughness) normally decreases. This chapter discusses the mechanisms that produce these changes and the factors that influence them. It explains how cold working increases dislocation density and how that affects the stress-strain characteristics of steel, particularly the onset of deformation. It describes the effects of deformation on ferrite, austenite, cementite, and pearlite, and how to optimize their microstructure for various applications through controlled deformation. It also provides information on subcritical annealing, the examination and control of texture, the use of optical microscopy to monitor the effects of recrystallization, and the effect of cold working on threaded fasteners, nails, and filaments used to manufacture cords.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 May 2018
DOI: 10.31399/asm.tb.hma.t59250047
EISBN: 978-1-62708-287-7
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2016
DOI: 10.31399/asm.tb.ascaam.t59190035
EISBN: 978-1-62708-296-9
Abstract
Structurally differentiated intermetallic phases are important constituents in the microstructure of aluminum alloys, with the potential to influence properties, behaviors, and processing characteristics. These phases can form in aluminum-silicon alloys with transition metals (Fe, Mn, Ni, Cr, V, Ti) and with metals such as Mg and Cu. This chapter is a compilation of phase diagrams, microstructure images, and tables, providing information on more than 30 binary, ternary, and quaternary alloy systems associated with intermetallic phases in aluminum-silicon castings. Each section includes tabular information and data on the intermetallic phases in the aluminum corner of the equilibrium phase diagram, the characteristics of the crystal lattice of intermetallic phases, the chemical composition of the alloy intermetallic phases, and equilibrium reactions in the alloy system.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2016
DOI: 10.31399/asm.tb.ascaam.9781627082969
EISBN: 978-1-62708-296-9
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410017
EISBN: 978-1-62708-265-5
Abstract
This chapter describes the iron-carbon phase diagram, its modification by alloying elements, and the effect of carbon on the chemistry and crystallography of austenite, ferrite, and cementite found in Fe-C alloys and steels. It also lays the groundwork for understanding important metallurgical concepts, including solubility, critical temperature, dislocation defects, slip, and diffusion, and how they affect the microstructure, properties, and behaviors of steel.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630117
EISBN: 978-1-62708-270-9
Abstract
Fatigue fractures are generally considered the most serious type of fracture in machinery parts simply because fatigue fractures can and do occur in normal service, without excessive overloads, and under normal operating conditions. This chapter first discusses the three stages (initiation, propagation, and final rupture) of fatigue fracture followed by a discussion of its microscopic and macroscopic characteristics. The relationship between stress and strength in fatigue is explained. The next section provides information that may help the uninitiated to appreciate some of the problems of laboratory fatigue testing and of the fatigue process itself. Finally, information on types and statistical aspects of fatigue is provided along with examples.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730001
EISBN: 978-1-62708-283-9
Abstract
This chapter discusses the foundational principles of materials science. It begins with a review of the periodic table and the fundamental particles, including atoms, ions, and molecules, that constitute matter. It also reviews the types of bonds that form between atoms and the relative levels of force they produce. It describes the difference between crystalline and noncrystalline or amorphous materials and discusses common crystal structures, including face-centered cubic, body-centered cubic, hexagonal close packed, and diamond cubic. It also describes the structure of sodium chloride and includes a list of structurally similar compounds.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.9781627083102
EISBN: 978-1-62708-310-2
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420171
EISBN: 978-1-62708-310-2
Abstract
This chapter explains how the presence of intermediate phases affects the melting behavior of binary alloys and the transformations that occur under different rates of cooling. It begins by examining the phase diagrams of magnesium-lead and copper-zinc, noting some of the complexities associated with intermediate phases. It then discusses the difference between ordered and disordered phases and how they are accounted for on phase diagrams. It describes how the atoms in a disordered solution may arrange themselves into an ordered array, forming a superlattice in the process of cooling, and goes on to identify the most common superlattice structures and their corresponding alloy phases. It also discusses the factors that limit the formation of superlattices along with the kinetics of spinodal decomposition and its effect on microstructure development.
1