Skip to Main Content
Skip Nav Destination

This edition of Steels is dedicated to the men and women who make, use, study, and design with steel. It is an entry into the broad, dynamic physical metallurgy of steels, with an attempt to summarize the state-of-the-art just past the turn into the twenty-first century. Eleven new chapters expand the coverage in previous editions, and other chapters have been reorganized and brought up to date. The interrelationships between chemistry, processing, structure, and performance, i.e., the elements of physical metallurgy, are integrated for all the types of steel discussed, but as before, descriptions of the evolution, characterization, and performance of steel microstructures, with increased emphasis on deformation and fracture, are major objectives of this text. Heat treatment remains a vital aspect of the manufacture of steel products, and the coverage of thermal processing and its effect on steels is expanded in this edition. However, heat treatment has been dropped from the title of this edition to reflect a broader view of steels. Also, the chapter on cast irons, included in the 1990 edition, has been dropped in view of the sharper focus on steels.

There have been dramatic changes in steel manufacture in the 15 years since the publication of the 1990 edition. Low-carbon sheet steels have experienced the most dynamic changes: thermal processing of sheet steels on a massive continuous scale has produced new grades with only subtle changes in chemistry. Low-carbon sheet steels, together with strengthening mechanisms, developments in microalloyed forging steels, steels with bainitic and a variety of ferritic microstructures, quench and tempered steel performance, high-carbon steels for rail and ultra-high strength wire, and the causes of low toughness and embrittlement are all discussed in new chapters. I have made some brief comments on the history of steel and noted the time frame for some important developments. A link to steelmaking and solidification is made in the chapter on the effects of primary processing on steel microstructure.

The text is meant to be informative, readable, up-to-date, and self-contained. Principles, concepts, and understanding of microstructural evolution and performance, within the framework of processing and properties, are illustrated, by plots of data, micrographs, and schematic diagrams. Some scientific and technological background is assumed, and if interested in more information or background, the reader is directed to listed references. Only a small number of references out of the massive literature on ferrous metallurgy have been selected, and a special effort has been made to include references to the most pertinent books, reviews, and technical papers on a given subject. Reference titles that often serve as mini-abstracts of paper content have been included. Each listed reference opens up further reference lists on a given topic.

The activities of the Advanced Steel Processing and Products Research Center, an industry/university cooperative research center at the Colorado School of Mines, have continued to be a vital source of research on steel, and I am grateful for the combined efforts of the industrial sponsors, students, and staff of the Center for their contributions. I thank Professors Steven Liu and John Speer, Colorado School of Mines, for their contribution of figures for this edition; Dr. Young-Kook Lee, Yonsei University, for unpublished work on high-temperature tempering; Dr. Bruce Kiefer, Morgan Construction Company, for his references on Stelmor processing; and Professor Brian Thomas, University of Illinois at Urbana-Champaign, for his references on continuous casting and inclusion-related phenomena. I value very much and am grateful for the continued insights and inspiration provided by my colleague Professor David Matlock at the Colorado School of Mines over the years. The support of my wife, Ruth, and my sons Matthew, Jonathan, Benjamin, and Thomas, with their growing families and expanding lives, is also very gratefully acknowledged.

George Krauss
Evergreen, Colorado
December, 2004

Send Email

Recipient(s) will receive an email with a link to 'SteelsProcessing, Structure, and Performance > Preface to Steels: Processing, Structure, and Performance (2005)' and will not need an account to access the content.

Subject: SteelsProcessing, Structure, and Performance > Preface to Steels: Processing, Structure, and Performance (2005)

(Optional message may have a maximum of 1000 characters.)

Close Modal

or Create an Account

Close Modal
Close Modal