ASM Failure Analysis Case Histories: Mechanical and Machine Components
Hydrogen Embrittlement of Alloy Steel Fasteners
-
Published:2019
Abstract
During an inspection of a structure two weeks after assembly, the heads of several cadmium-plated AISI 8740 steel fasteners were found to be completely separated from their respective shanks. SEM examination of the fracture surfaces revealed a brittle, intergranular fracture mode, indicating hydrogen embrittlement. An investigation was conducted to determine the extent of hydrogen embrittlement in the various lots of cadmium-plated 8740 steel fasteners. It was found that hydrogen embrittlement was caused by the use of a bright, impervious cadmium electroplate that hindered diffusion of mobile hydrogen outward from the surface of the pin. After the cadmium layer was removed, the mobile hydrogen contained on the surface of the steel and in the electroplated deposit was released, and the embrittlement problem was alleviated. To prevent reoccurrence, the bright cadmium layer was stripped from the pins, which were then baked and repeated with a dull, porous cadmium layer that allowed outward diffusion of hydrogen. The pins were baked again after deposition of the porous cadmium layer. This eliminated the problem.
Hydrogen Embrittlement of Alloy Steel Fasteners, ASM Failure Analysis Case Histories: Mechanical and Machine Components, ASM International, 2019, https://doi.org/10.31399/asm.fach.mech.c0048634
Download citation file: