Abstract
The continuous rolling of Nitinol alloys is a metalworking process with the ability to produce large quantities of sheet with uniform properties for the use in actuation applications in motion systems with cyclic loads. Great advantages of continuous rolling in comparison with other manufacturing methods are the cold work and heat treatment steps and their ability to influence the properties of the product and keep them in a very tight window over the width and the length of the process. Those tightly controlled properties are key-requirements to use the continuous rolled Nitinol material for subsequent automated processes like stamping in progressive dies or deep- drawing. It is also required for efficient reel-to-reel laser or EDM cutting. The primary objective of this work is to evaluate and obtain the properties of Nitinol continuously flat-rolled sheets and optimization of the process parameters by fatigue evaluation.