Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-5 of 5
Z. Yu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 437-446, May 4–6, 2022,
Abstract
View Paper
PDF
In this work, a novel HVOAF process fueled with ethanol was employed to prepare NiCoCrAlYTa coatings on AISI 304 stainless steel substrate. To be able to add compressed air into the torch, it was designed to add a second-stage combustion chamber. Thereafter, investigations were carried out to determine the influence of different compressed air flow rates on the evolution of the microstructure and properties of the resulting NiCoCrAlYTa coatings. The phase composition, microstructure, porosity, microhardness, bond strength and wear resistance of the as-sprayed coatings have been studied in detail. The results reveal that the compressed air flow rate has a substantial effect on the coating's microstructure. The addition of compressed air also contributes to reduce the degree of oxidation of the coating, which could be attributable to a decrease in the temperature of the flying particles and an increase in their velocity. Although the use of compressed air diminishes the coating's bonding strength, it still has some elevated strength. Furthermore, the injection of compressed air improves the coating's sliding wear resistance dramatically. SEM and EDS were used to investigate the sliding wear mechanism of the coating. Detailed correlation between the compressed air flow rates and the coating properties are elaborated to identify the coatings exhibiting optimum performances.
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 273-279, June 7–9, 2017,
Abstract
View Paper
PDF
ZnO films were deposited by solution precursor plasma spray (SPPS) process with different substrate preheating temperatures and torch powers, which were used to study the effects on crystallizations and microstructures. With increasing substrate preheating temperature from 0 °C to 400 °C, ZnO films were always preferential orientation along (002) plane with much higher crystallinity. And more apparent crystallized particles appeared with higher agglomeration degree forming cauliflower-like microstructure under higher preheating temperature. For adjusting hydrogen flow rate, the moderate hydrogen flow rate was the suitable condition for obtaining oriented growth along (002). Besides, all ZnO films under different hydrogen flow rates with a constant preheating temperature as 400 °C were always combined with crystallized particles. Moreover, the increment of torch power makes microstructure becomes denser with less interspace between neighbouring particles. Moreover, it is found that crystallinity and crystallized particles is more dependent on preheating temperature and torch power plays a more important role on densification by two staggered experiments. Taking applications of metal oxides films via SPPS into consideration, choosing moderate substrate preheating temperature and hydrogen flow rate will obtain crystallized particles, unusual preferentially oriented planes and high specific surface area, which is very favourable for optical, electrical, electrochemical properties.
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 1137-1143, June 7–9, 2017,
Abstract
View Paper
PDF
In this study, YSZ coatings were deposited on different substrate materials (stainless steel and aluminum) using suspension plasma spray (SPS) technique. The effects of substrate properties (material, surface topology, temperature, and thickness) on the formation of coatings were investigated. The results showed that, with the identical spray parameters, the porosity is higher for the coatings deposited on aluminum than that on stainless steel due to the high thermal transfer ability of the former substrate material. The SEM results revealed that the microstructure of as-prepared coatings could be tailored from the vertical cracked structure to the columnar structure by increasing the substrate surface roughness and their formation mechanisms were discussed. The substrate preheating temperature has an influence on the microstructure of the coatings, especially in the interfacial region and increasing the substrate temperature is an effective means for reducing the interface defects in the coatings. With the increase of the substrate thickness, the quantity of the vertical cracks in the coatings is reduced and their width becomes narrower.
Proceedings Papers
ITSC2016, Thermal Spray 2016: Proceedings from the International Thermal Spray Conference, 237-243, May 10–12, 2016,
Abstract
View Paper
PDF
This study assesses the effect of yttrium additions on plasma sprayed MoS 2 /Ni-SiC-Y coatings produced from particle-reinforced composite powders. It is shown that the microstructure of the self-lubricating coatings improves with the addition of yttrium, resulting in increased hardness and cohesive strength. The tribological properties of the coatings were also studied, showing that the ideal amount of yttrium is 12 wt% based on wear loss measurements and that the fractal dimension of sliding wear debris depends on the friction load as well as the mass fraction of yttrium.
Proceedings Papers
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 444-454, May 21–23, 2014,
Abstract
View Paper
PDF
In this work, finite element analysis is used to investigate the effect of pore size on the stress intensity factor (SIF) of plasma sprayed coatings. Test samples with different pore sizes were obtained by spraying wollastonite powders with particle sizes of 60-75 μm, 75-95 μm, and 95-150 μm onto Ti 6 Al 4 V coupons. The results show that coating stress varies in proportion to the length of 2D pores and to a lesser extent the diameter of 3D pores. This implies that reducing the length of 2D pores may be considered as a way to increase the fracture resistance of plasma sprayed coatings.