Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Z. Ren
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 1086-1091, June 7–9, 2017,
Abstract
View Paper
PDF
Since cold spray is widely considered as an additive manufacturing and damage repair technology, it is crucial to understand the coating build-up process and the temperature evolution. In this work, a 3D numerical model was developed to simulate the transient coating build-up process as well as the heat transfer in cold spray. By coupling the heat transfer with the ALE (Arbitrary Lagrangian–Eulerian) moving mesh and coating thickness model, this 3D model is able to investigate the temperature evolution of a coating which simultaneously grows according to the nozzle trajectory. The nozzle trajectory that represents the heat source and mass flux of particle impact is generated and simulated in the offline programming software RobotStudio. By assigning the results of coating thickness distribution, the simultaneous build-up of coating computational domain is achieved by ALE moving mesh method. The validation of the FEA (finite element analysis) model was carried out by measuring the coating surface temperature via an infrared imaging camera. With the proposed model, it is able to study the actual coating build-up process as well as the heat transfer phenomena, which may provide more insights for the application in additive manufacturing and damage repair.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 1208-1212, June 2–4, 2008,
Abstract
View Paper
PDF
Ni/Al alloy powders were synthesized by ball milling of nickel-aluminum powder mixture with a Ni/Al atomic ratio of 1:1. Ni/Al alloy coating was deposited by cold spraying using N 2 as accelerating gas. NiAl intermetallic compound was evolved in-situ through post-spray annealing treatment of cold-sprayed Ni/Al alloy coating. The effect of annealing temperature on the phase transformation behavior from Ni/Al mechanical alloy to intermetallics was investigated. The microstructure of the mechanically alloying Ni/Al powder and NiAl coatings was characterized by scanning electron microscopy and X-ray diffraction analysis. The results show that a dense Ni/Al alloy coating can successfully be deposited by cold spraying using the mechanically alloyed powder as feedstock. The as-sprayed alloy coating exhibited a laminated microstructure retained from the mechanically alloying powder. The annealing of the subsequent Ni/Al alloy coating at a temperature higher than 850°C leads to the complete transformation from Ni/Al alloy to NiAl intermetallic compound.