Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-6 of 6
Z. Pala
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2018, Thermal Spray 2018: Proceedings from the International Thermal Spray Conference, 1-7, May 7–10, 2018,
Abstract
View Paper
PDF
For the engines used in small turboprop aircrafts, the introduction of abradable coatings represents a feasible way to reach higher levels of overall engine efficiency, specifically by improving the fuel consumption and increasing the inter turbine temperature margin. Abradable coatings on seals also contribute to improved hot restarts capability of an engine and lead to substantial extension of service life of the rotating counter bodies. In our contribution, we concentrate on flame sprayed nickel graphite abradable coating that can be used in turboprop engines both for seals and clearance control. The focus is the impact of spraying parameters on the physical and function properties of the abradable coating.
Proceedings Papers
ITSC2016, Thermal Spray 2016: Proceedings from the International Thermal Spray Conference, 267-272, May 10–12, 2016,
Abstract
View Paper
PDF
This paper presents the results of three experiments in which coatings are produced by suspension plasma spraying using a water-stabilized hybrid torch. Shadowgraphy is used to optimize the injection of the suspension and visualize liquid fragmentation in the plasma jet. Deposition efficiency is evaluated and the production of coatings with different microstructures is demonstrated for YSZ, YAG, and Al 2 O 3 .
Proceedings Papers
ITSC2016, Thermal Spray 2016: Proceedings from the International Thermal Spray Conference, 361-367, May 10–12, 2016,
Abstract
View Paper
PDF
In this study, a water-based corundum suspension was used to deposit 60 μm alumina coatings onto carbon steel substrates by HVOF spraying. The aim was to develop thin coatings with superior wear properties. Hydrogen was used as a fuel gas and process parameters were varied to determine their effect on microstructure and properties. Coating microstructure was examined by SEM to assess particle melting and morphology and XRD was used to study the phase transformation of the feedstock suspension. At higher combustion flame energy, the coating transformed primarily to gamma alumina, while at lower energy, it was found to be a mixture of alpha and gamma alumina. Nanoindentation tests were used to measure the hardness and elastic modulus of individual phases. Ball-on-plate wear tests helped reveal the relationship between wear performance and the alpha-gamma ratios in the coatings.
Proceedings Papers
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 593-598, May 21–23, 2014,
Abstract
View Paper
PDF
In this study, gas- and water-stabilized plasma torches were used to spray cesium-doped yttrium aluminum garnet (Ce:YAG) on different substrate materials and in large-area free-standing layers. The coatings were evaluated based on microstructure, crystallinity, and thermal stability, and tests were performed to measure porosity, hardness, phase composition, band-gap energy, and the presence of defects. Some coatings were also heat treated to determine how it changes their spectral response. The results of the examinations and tests are presented in the paper.
Proceedings Papers
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 617-622, May 21–23, 2014,
Abstract
View Paper
PDF
Alumina-zirconia ceramic material has been plasma sprayed using a water stabilized plasma torch (WSP) to produce free standing coatings. The as-sprayed coatings have very low porosity and are mostly amorphous. The amorphous material crystallizes at temperatures above 900 °C. A spark plasma sintering apparatus has been used to heat the as-sprayed samples to temperatures above 900 °C to induce crystallization while at the same time a uniaxial pressure of 80 GPa has been applied to the their surface. After such post-treatment, the ceramic samples are crystalline and exhibit very low open porosity. The as-sprayed amorphous materials also exhibit high hardness and high abrasion resistance. Both properties are significantly improved in the heat-treated samples whose microstructure is best described as nanocomposite with the very small crystallites embedded in an amorphous matrix.
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 650-655, September 27–29, 2011,
Abstract
View Paper
PDF
Titanium dioxide coatings were sprayed by a water stabilized plasma gun (WSP) to form robust self-supporting bodies with a photocatalytically active surface. Agglomerated nanometric powder was used as a feedstock. In one case argon was used as a powder-feeding as well as coating-cooling gas whereas in the other case nitrogen was used. Stainless steel was used as a substrate and the coatings were released after the cooling. Over one millimeter thick self-supporting bodies were studied by XRD, HR-TEM, XPS, Raman spectroscopy, UV-VIS spectrophotometry and photocatalytic tests. Majority of the tests was done at the surface as well as at the bottom side representing the contact surface with the substrate during the spray process. Porosity was studied by image analysis on polished cross sections where also microhardness was measured. Dominant phase present in the sprayed samples was rutile whereas anatase was the main minor component. Hydrogen content in the nitrogen assisted coating was higher, but the character of the optical absorption edge remained the same for both samples. Photoelectron spectroscopy revealed differences in the character of O 1s peak between both samples. The photocatalytic activity was tested by decomposition of acetone at UV illumination, whereas also the end products - CO and CO 2 - were monitored. The nitrogen-assisted coating was revealed as more efficient photocatalyst.