Skip Nav Destination
Close Modal
By
Valery Rudnev, George E. Totten, Yulia Pleshivtseva, Lauralice C.F. Canale, Rosa L. Simencio Otero
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Book Series
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
Yulia Pleshivtseva
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007011
EISBN: 978-1-62708-450-5
Abstract
This article presents the fundamentals of induction hardening (IH). It focuses on liquid quenching technology, but some specifics and brief comments are provided regarding alternative quenching media as well. The article provides a discussion on the following quench modes that can be applied in IH using liquid media: conventional immersion quenching, open spray quenching, flood quenching, and submerged quench or submerged spray quench. It also focuses on four primary methods of IH: scan hardening, progressive hardening, single-shot hardening, and static hardening.
Proceedings Papers
HT2017, Heat Treat 2017: Proceedings from the 29th Heat Treating Society Conference and Exposition, 65-69, October 24–26, 2017,
Abstract
View Paper
PDF
While the induction heating of non-ferrous alloys is fundamentally no different than that of other metals, the unique physical properties of different non-ferrous alloys have a number of critical induction heating implications. This paper addresses a number of physical characteristics and practical subtleties associated with the induction heating of non-ferrous alloys, focusing particularly on the influence of electromagnetic and thermal material properties. A mathematical optimization routine for continuous induction heating processes is also presented. Utilizing coupled electromagnetic-thermal FEA computer simulation results and taking into account real-world process requirements, this routine is used to maximize induction heating quality and equipment performance.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005893
EISBN: 978-1-62708-167-2
Abstract
This article describes the effects of furnace atmospheric elements, including air, water vapor, molecular nitrogen, carbon dioxide, and carbon monoxide, on steels. It provides useful information on six groups of commercially important prepared atmospheres classified by the American Gas Association on the basis of the method of preparation or on the original constituents employed. These groups are designated and defined as follows: Class 100, exothermic base; Class 200, prepared nitrogen base; Class 300, endothermic base; Class 400, charcoal base; Class 500, exothermic-endothermic base; and Class 600, ammonia base. These are subclassified and numerically designated to indicate variations in the method by which they are prepared. The article also contains a table that lists significant furnace atmospheres and typical applications.