Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Journal
Article Type
Volume Subject Area
Date
Availability
1-8 of 8
Yukinori Yamamoto
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1240-1248, February 25–28, 2025,
Abstract
View Papertitled, Characterization of Precipitation-Strengthening Heat-Resistant Austenitic Stainless Steels for Life-Prediction Modeling
View
PDF
for content titled, Characterization of Precipitation-Strengthening Heat-Resistant Austenitic Stainless Steels for Life-Prediction Modeling
In this study, the role of minor alloying additions in 347H stainless steels (UNS34709, ASTM A240/240M) on creep-rupture properties at 650-750°C and microstructure evolution during isothermal exposure at 750°C has been investigated, aiming to provide the experimental dataset as boundary conditions of physics-based modeling for material/component life prediction. Four different 347H heats containing various amounts of boron and nitrogen additions were prepared and evaluated. The combined additions of B and N are found to stabilize the strengthening secondary M 23 C 6 carbides and retarding the transition from M 23 C 6 to sigma phase precipitates during thermal exposure. The observed kinetics of microstructure evolution reasonably explains the improvement of creep-rupture properties of 347H stainless steels with the B and N additions.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1249-1256, February 25–28, 2025,
Abstract
View Papertitled, Development of PWHT-Free, Reduced Activation Creep-Strength Enhanced Bainitic Ferritic Steel for Large-Scale Fusion Reactor Components
View
PDF
for content titled, Development of PWHT-Free, Reduced Activation Creep-Strength Enhanced Bainitic Ferritic Steel for Large-Scale Fusion Reactor Components
A compositional modification has been proposed to validate an alloy design which potentially eliminates the requirement of post-weld heat treatment (PWHT) while preserving the advantage of mechanical properties in a reduced activation bainitic ferritic steel based on Fe-3Cr-3W-0.2V- 0.1Ta-Mn-Si-C, in weight percent, developed at Oak Ridge National Laboratory in 2007. The alloy design includes reducing the hardness in the as-welded condition for improving toughness, while increasing the hardenability for preserving the high-temperature mechanical performance such as creep-rupture resistance in the original steel. To achieve such a design, a composition range with a reduced C content combining with an increased Mn content has been proposed and investigated. Newly proposed “modified” steel successfully achieved an improved impact toughness in the as- welded condition, while the creep-rupture performance across the weldments without PWHT demonstrated ~50% improvement of the creep strength compared to that of the original steel weldment after PWHT. The obtained results strongly support the validity of the proposed alloy design.
Proceedings Papers
Alloy Design and Development of High Cr Containing FeCrAl Ferritic Alloys for Extreme Environments
Free
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 628-639, October 21–24, 2019,
Abstract
View Papertitled, Alloy Design and Development of High Cr Containing FeCrAl Ferritic Alloys for Extreme Environments
View
PDF
for content titled, Alloy Design and Development of High Cr Containing FeCrAl Ferritic Alloys for Extreme Environments
A new alloy design concept for creep- and corrosion-resistant, fully ferritic alloys was proposed for high-temperature structural applications in current/future fossil-fired power plants. The alloys, based on the Fe-30Cr-3Al (in weight percent) system with minor alloying additions of Nb, W, Si, Zr and/or Y, were designed for corrosion resistance though high Cr content, steam oxidation resistance through alumina-scale formation, and high-temperature creep performance through fine particle dispersion of Fe 2 (Nb,W)-type Laves phase in the BCC-Fe matrix. Theses alloys are targeted for use in harsh environments such as combustion and/or steam containing atmospheres at 700°C or greater. The alloys, consisting of Fe-30Cr-3Al-1Nb-6W with minor alloying additions, exhibited a successful combination of oxidation, corrosion, and creep resistances comparable or superior to those of commercially available heat resistant austenitic stainless steels. An optimized thermo-mechanical treatment combined with selected minor alloying additions resulted in a refined grain structure with high thermal stability even at 1200°C, which improved room-temperature ductility without sacrificing the creep performance. The mechanism of grain refinement in the alloy system is discussed.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 318-325, October 11–14, 2016,
Abstract
View Papertitled, Development of High Cr Containing FeCrAl Alloys for Fossil Energy Structural Applications
View
PDF
for content titled, Development of High Cr Containing FeCrAl Alloys for Fossil Energy Structural Applications
New Fe-base ferritic alloys based on Fe-30Cr-3Al-Nb-Si (wt.%) were proposed with alloy design concepts and strategies targeted at improved performance of tensile and creep-rupture properties, environmental compatibilities, and weldability, compared to Grade 91/92 type ferritic-martensitic steels. The alloys were designed to incorporate corrosion and oxidation resistance from high Cr and Al additions and precipitate strengthening via second-phase intermetallic precipitates (Fe2Nb Laves phase), with guidance from computational thermodynamics. The effects of alloying additions, such as Nb, Zr, Mo, W, and Ti, on the properties were investigated. The alloys with more than 1 wt.% Nb addition showed improved tensile properties compared to Gr 91/92 steels in a temperature range from 600-800°C, and excellent steam oxidation at 800°C as well. Creep-rupture properties of the 2Nb-containing alloys at 700°C were comparable to Gr 92 steel. The alloy with a combined addition of Al and Nb exhibited improved ash-corrosion resistance at 700°C. Additions of W and Mo were found to refine the Laves phase particles, although they also promoted the coarsening of the particle size during aging. The Ti addition was found to reduce the precipitate denuded zone along the grain boundary and the precipitate coarsening kinetics.
Journal Articles
Materials Research for Advanced Power Engineering in Europe
Available to Purchase
Journal: AM&P Technical Articles
AM&P Technical Articles (2015) 173 (3): 24–27.
Published: 01 March 2015
Abstract
View articletitled, Materials Research for Advanced Power Engineering in Europe
View
PDF
for article titled, Materials Research for Advanced Power Engineering in Europe
The 10th Liège Conference on Materials for Advanced Power Engineering was held in September 2014. This article presents conference highlights, including the current state of European materials research for advanced power engineering applications; European multinational programs in this area; and critical research topics including creep-fatigue, new alloy development, and materials developments for gas turbines.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1016-1024, October 22–25, 2013,
Abstract
View Papertitled, Effect of Non-Standard Heat Treatments on Creep Performance of Creep-Strength Enhanced Ferritic (CSEF) Steel Weldments
View
PDF
for content titled, Effect of Non-Standard Heat Treatments on Creep Performance of Creep-Strength Enhanced Ferritic (CSEF) Steel Weldments
This paper summarizes recent efforts to improve creep performance in Grade 91 (Mod. 9Cr-1Mo, ASTM A387) steel weldments via non-standard heat treatments prior to welding. Such heat treatments offer a potential solution for minimizing Type IV failures in creep strength enhanced ferritic (CSEF) steels. A lower temperature tempering (LTT, 650°C) of the 9Cr steels prior to gas tungsten arc welding (GTAW) resulted in improved creep-rupture life at 650°C compared to the samples tempered at a standard condition (HTT, 760°C) before welding. From detailed characterization of precipitation kinetics in the heat affected zone, it was hypothesized that M 23 C 6 carbides in the fine-grain heat-affected zone (FGHAZ) in the LTT sample were fully dissolved, resulting in re-precipitation of strengthening carbides during post weld heat treatment (PWHT). This was not the case in the HTT sample since M 23 C 6 in the FGHAZ was only partially dissolved prior to welding, which caused coarsening of existing M 23 C 6 after PWHT and premature creep failure in the FGHAZ. However, it was also found that the LTT raised the ductile-brittle transition temperature above room temperature (RT). Two different thermo-mechanical treatments (TMTs); two-step tempering and aus-forging/aus-aging, of the modified 9Cr-1Mo steels were attempted, in order to control the balance between creep properties and RT ductility, through control of precipitation kinetics of the M 23 C 6 carbides and/or MX carbo-nitrides. The hardness map of the TMT samples after GTAW and PWHT were evaluated.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1432-1440, October 22–25, 2013,
Abstract
View Papertitled, In-Situ Full Field Creep Deformation Study of Creep Resistant Materials Welds
View
PDF
for content titled, In-Situ Full Field Creep Deformation Study of Creep Resistant Materials Welds
The current study proposed a new method that utilizes digital image correlation (DIC) techniques to measure in-situ full field strain maps of creep resistant material welds. The stress-rupture test is performed in a Gleeble thermal mechanical simulator. This technique successfully captured a significant difference in the local creep deformation between two Grade 91 steel welds with different pre-welding conditions (standard and non-standard). Strain contour plots exhibited inhomogeneous deformation in the weldments, especially at the heat-affected zone (HAZ). Standard heat-treated specimens had significant creep deformation in the HAZ. On the other hand, non-standard heat treated specimens showed HAZ local strains to be 4.5 times less than that of the standard condition, after a 90-hour creep test at 650°C and 70 MPa. The present study measured the full field strain evolution in the weldments during creep deformation for the first time. The proposed method demonstrated a potential advantage to evaluate local creep deformation in the weldments of any creep resistant material within relatively short periods of time.
Journal Articles
Case Study: Additive Manufacturing of Aerospace Brackets
Available to Purchase
Journal: AM&P Technical Articles
AM&P Technical Articles (2013) 171 (3): 19–22.
Published: 01 March 2013
Abstract
View articletitled, Case Study: Additive Manufacturing of Aerospace Brackets
View
PDF
for article titled, Case Study: Additive Manufacturing of Aerospace Brackets
This case study describes how electron-beam melting, a powder bed additive manufacturing technology, helped reduce the cost and material scrap associated with the production of Ti-6Al-4V brackets used in the hot side of the engine on Lockheed Martin's Joint Strike Fighter.