Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Yuchen Chen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
SMST2024, SMST 2024: Extended Abstracts from the International Conference on Shape Memory and Superelastic Technologies, 52-53, May 6–10, 2024,
Abstract
View Papertitled, On Plastic Strains Generated by B2-B19′ Martensitic Transformation in NiTi Proceeding under External Stress
View
PDF
for content titled, On Plastic Strains Generated by B2-B19′ Martensitic Transformation in NiTi Proceeding under External Stress
The stress-strain-temperature thermomechanical responses of NiTi shape memory alloys due to B2-B19′ martensitic transformation (MT) should ideally be phase and strain reversible in closed-loop thermomechanical load cycles, where the austenite and martensite phases do not undergo plastic deformation. However, this ideal behavior is only observed when MT occurs under zero or very low externally applied stresses. When MT occurs under higher externally applied stresses, it generates small plastic strains. These strains accumulate whenever MT proceeds under external stress, leading to the accumulation of residual plastic strains, internal stress, and lattice defects during cyclic thermomechanical loads. This accumulation results in the instability of cyclic thermomechanical responses, a phenomenon known as “functional fatigue.”