Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Y. Kouzaki
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 694-698, May 14–16, 2007,
Abstract
View Paper
PDF
Aluminum nitride (AlN) and iron nitride (Fe 4 N) coatings were fabricated by reactive plasma spraying using fine feedstock powders. Reactive plasma spraying, in which element particles react with surrounding active species in the plasma, enables to fabricate nitride ceramics which decompose without stable melting phase. However, it is difficult to fabricate the coatings which include higher concentration of nitride phase by reactive plasma spraying using conventional particle size of feedstock powders. Therefore, fine feedstock powders were used in order to enhance the nitriding reaction during spraying. Aluminum or iron particles were injected into Ar/N 2 plasma and were deposited onto graphite substrates. It was possible not only to increase the nitride phase content in the coatings but also to densify the microstructure in both materials. Thus, it became clear that using fine feedstock powders are useful for fabrication of nitride ceramic coatings by reactive plasma spraying.
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 865-870, May 15–18, 2006,
Abstract
View Paper
PDF
Aluminum nitride (AlN) is one of the attractive ceramics with respect to its excellent mechanical and electrical properties. In this study, AlN coatings were fabricated and the influence of feedstock powders was investigated by reactive RF (Radio Frequency) plasma spraying. Two different particle sizes of commercial aluminum (Al) powders and Al/AlN mixed powders were used as the feedstock powder. The feedstock powder was injected into a RF plasma, and sprayed particles were deposited onto carbon steel or quartz substrates. As a result, it was possible to fabricate thick and dense AlN coating using smaller particle size of Al powders and quartz substrate. However, many agglomerates were formed in the coatings. On the other hand, 50 wt% or above of AlN addition in the feedstock powders was effective to prevent the formation of the agglomerates. Therefore, Al/AlN mixed powder with smaller particle size was useful for fabrication of AlN coatings by reactive RF plasma spraying.