Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
X.J. Ning
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 1191-1196, June 2–4, 2008,
Abstract
View Paper
PDF
In this study, Al-Sn binary alloy coatings were prepared with Al-5wt.%Sn (Al-5Sn) and Al-10wt.%Sn (Al-10Sn) gas atomized powders by low pressure and high pressure cold spray process. The microstructure and microhardness of the coatings were characterized. The as-sprayed coating were heat treated at 150, 200, 250 and 300 °C for 1 hour, respectively. The effect of heat treatment on microstructure, microhardness and content of Sn phase of the coatings were investigated. The bonding strength of as-sprayed and heat treated Al-Sn coatings were also studied. The results show that the dense and well-bonded Al-10Sn coating can be deposited by low pressure with helium gas while Al-5Sn coating by high pressure cold spray with nitrogen gas. The content of Sn for both Al-5Sn and Al- 10Sn in as-sprayed coatings are consistent with that in feed stock powders. The coarsening and/or migration of Sn phase in both coatings were observed when the annealing temperature exceeds 200 °C. Furthermore, the microhardness of the coatings decreased significantly under the annealing temperature of 250 °C. EDAX analysis shows that the heat treatment has no significant effect on content of Sn phase in Al-5Sn coatings. Bonding strength of as-sprayed Al-10Sn coating is slightly higher than that of Al-5Sn coating. Annealing under 200 °C can increase the bonding strength of Al-5Sn coatings.