Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
X.B. Zhao
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 53-58, May 15–18, 2006,
Abstract
View Paper
PDF
In this work, a TiO 2 coating with nanostructured surface was obtained through plasma sprayed nano-sized TiO 2 powder. Its bonding strength onto Ti-6Al-4V substrate is high up to 38 MPa. At same time, we have successfully improved the bioactivity of plasma sprayed TiO 2 coating with nanostructured surface using hydrogen ion implantation and UV illumination. Bone-like apatite can form on the surface of the post-treated TiO 2 coatings after they are soaked in simulated body fluid for a period of time. Introduction of surface bioactivity (bone conductivity) to plasma-sprayed TiO 2 coatings which are generally recognized to have excellent biocompatibility and corrosion resistance as well as high bonding to titanium alloys makes them more superior than many current biomedical coatings such as plasma-sprayed hydroxyapatite.