Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Wendy Lau
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2017, ISTFA 2017: Conference Proceedings from the 43rd International Symposium for Testing and Failure Analysis, 309-316, November 5–9, 2017,
Abstract
View Papertitled, Automated Schematic Transformation to Enhance Circuit Failure Design Debug
View
PDF
for content titled, Automated Schematic Transformation to Enhance Circuit Failure Design Debug
In a failure event, circuit schematic analysis usually follows after fault isolation to increase the success rate. However, analyzing an extracted netlist of the isolated sub-circuit can be messy. Manual circuit translation from layout where the analyst is in control of the cell instance placement is one way to overcome this challenge. Although it is neater and intuitive for analysis, it can be time consuming to create the schematic. To analyze circuits in a systematic manner, cross-mapping between layout and schematic contents is the most commonly recognized approach. However, at times, cross-mapping alone is insufficient and some further simplification procedures are favorable. This paper describes the challenges and illustrates using real case studies, how schematics re-ordering and substitutions can be useful to simplify and enhance circuit analysis. These procedures can be implemented in an automated manner to enhance turnaround time for analysis.
Proceedings Papers
ISTFA2014, ISTFA 2014: Conference Proceedings from the 40th International Symposium for Testing and Failure Analysis, 456-461, November 9–13, 2014,
Abstract
View Papertitled, Debugging Phase-Locked Loop Failures in Integrated Circuit Products
View
PDF
for content titled, Debugging Phase-Locked Loop Failures in Integrated Circuit Products
A phase-locked loop (PLL) is commonly used in integrated circuit devices for frequency control. In a finished product, it comprises of sub-building blocks operating in a closed-loop control system which do not have register readback or test access points for easy debugging. Failure analysis becomes a challenge. This paper demonstrates the inherent limitation of relying only on dynamic fault isolation techniques, in specific frequency mapping for PLL failure debug. A systematic debug approach that combines volume failure characterization on test, additional characterization using dynamic photon emission and design simulation is then presented. Results are obtained on a 28 nm node device.