Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
V. V. Sobolev
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC1999, Thermal Spray 1999: Proceedings from the United Thermal Spray Conference, 45-50, March 17–19, 1999,
Abstract
View Papertitled, Mechanisms of Oxidation of Thermally Sprayed Coatings
View
PDF
for content titled, Mechanisms of Oxidation of Thermally Sprayed Coatings
This paper investigates the oxidation that occurs during the flight movement of a powder particle and during the spatter solidification in the thermal spray process. The effects of oxidation on droplet flattening, on the mechanical and thermal interactions between spatter and substrate, on spatter morphology, on porosity, and on adhesion are studied. The influence of wetting and oxygen dissolution is analyzed. The experimental results show that during High Velocity Oxy-Fuel spraying of the chromium carbide-nickel-chromium powder, the relative mass of chromium oxide in the coating is about 4.95%. The theoretical results agree well with the experimental observations. Paper includes a German-language abstract.