Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
V. Sember
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 1445-1449, June 2–4, 2008,
Abstract
View Paper
PDF
The present paper examines a hybrid DC arc thermal plasma torch with gas-water stabilisation and its application for thermal spraying. The torch was worked out based on the water-stabilised plasma torch WSP, main features of which are high temperature of the generated plasma and high powder through-put. In the hybrid torch the cathode part is modified in the way like in gas torches, which not only provides proper stabilisation of the arc in this region and cathode protection from contact with stabilising water but also allows to vary properties of the generated plasma. Change of the secondary gas flow rate, which is usually argon, results in strong changes of the plasma gas density, while the energy balance of the torch remains almost unchanged. This in turn leads to modification of the plasma jet properties. The paper describes effect of the plasma torch parameters on behaviour of the generated plasma jet and injected powder particles. The results show how particle velocities follow changes of the plasma jet properties according to the plasma torch operation parameters. Both increase of arc current and argon flow rate provided increase of particle velocities.
Proceedings Papers
ITSC1998, Thermal Spray 1998: Proceedings from the International Thermal Spray Conference, 809-814, May 25–29, 1998,
Abstract
View Paper
PDF
Plasma spraying of metals and metallic alloys performed in controlled atmosphere or soft vacuum results in coatings with a low oxidation level and excellent thermomechanical properties. Unfortunately, the spraying cost is drastically increased by one or two orders of magnitude compared to air plasma spraying (APS). Thus the minimisation of oxidation during APS is a key issue for the development of such coatings. Oxygen concentrations sucked into plasma jets have been measured by an enthalpy probe linked to a mass spectrometer. This technique allows to determine simultaneously plasma composition, temperature and velocity distributions within the plasma plume. Results have been compared to those obtained with a two-dimensional turbulent flow model. The obtained results have shown that surrounding air entrainment is reduced when using adequate Ar/H2/He mixtures which viscosity is higher than that of Ar/H, mixtures, limiting the turbulence in the jet fringes and pumping of the surrounding atmosphere.