Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-4 of 4
V. Gupta
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 929-934, May 15–18, 2006,
Abstract
View Paper
PDF
The High Velocity Oxy-Fuel (HVOF) combustion spray process has been used successfully for spraying polymers and polymer-matrix composite coatings. Spraying of polymer ceramic composite powders produced by ball-milling nominal 60 ..m Nylon-11 with different size scale (7 nm to 15 µm) ceramic reinforcements is an effective method of producing semi-crystalline micron and nano-scale reinforced composite coatings. Polymer matrix composite coatings with nominal 10 vol. % of different size scale silica and alumina reinforcements have been produced. The levels of filler loading in both the feedstock powders and HVOF-sprayed coatings were determined by thermo-gravimetric analysis (TGA) and compared using ashing. Particle size analysis, microstructural characterization and the elemental compositions of the feedstock powders and as-sprayed coatings were determined by optical and scanning electron microscopy and energy dispersive spectroscopy. The influence of dispersion, distribution and size of the reinforcing phase was studied and correlated to coating microstructure and process parameter variations. The scratch resistance of the coatings was measured as a function of reinforcement size and compared with those of the pure HVOF-sprayed Nylon-11 coatings.
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 941-946, May 15–18, 2006,
Abstract
View Paper
PDF
The high velocity oxy-fuel (HVOF) combustion spraying of ball-milled Nylon-11/ceramic composite powders is an effective, economical and environmentally sound method for producing semi-crystalline nano- and micron-scale reinforced polymer composite coatings. Polymer matrix composite coatings reinforced with multiple scales of ceramic particulate materials are expected to exhibit improved load transfer between the reinforcing phase and the matrix due to interactions between large and small ceramic particles. An important step in developing multi-scale polymer matrix composite coatings and associated load transfer theory is determining the effect of reinforcement size on the distribution of the reinforcement and the properties of the composite coating. Composite feedstock powders were produced by dry ball milling Nylon-11 with fumed silica particles of 7, 20 and 40 nm, with fumed alumina particles of 50 and 150 nm, and with white calcined alumina 350 nm, 1, 2, 5, 10, 20, 25 and 50 µm at 10 % by volume overall ceramic phase loadings. The effectiveness of the ball-milling process as a function of reinforcement size was evaluated by SEM, EDS microanalysis and by characterizing the behavior of the powders during HVOF spraying. The microstructures of the as-sprayed coatings were characterized by optical microscopy, SEM, EDS and XRD. The reinforcement particles were found to be concentrated at the splat boundaries within the coatings, forming a series of interconnected lamellar sheets with good 3-dimensional distribution. The scratch resistance of the coatings improved consistently and logarithmically as a function of decreasing reinforcement size and compared to those of HVOF sprayed pure Nylon-11.
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 947-952, May 15–18, 2006,
Abstract
View Paper
PDF
A three-dimensional model of particle impact and deformation on rough surfaces has been developed for HVOF sprayed polymer particles. Fluid flow and particle deformation was predicted by the Volume of Fluid (VoF) method using Flow-3D® software. The effect of roughness on the mechanics of splatting and final splat shapes was explored through the use of several prototypical rough surfaces, e.g. steps and grooves. In addition, a numerical representation of a more realistic rough surface, generated by optical interferometry of an actual grit blasted steel surface, was also incorporated into the model. Predicted splat shapes were compared with SEM images of Nylon 11 splats deposited onto grit blasted steel substrates. Rough substrates led to the generation of fingers and other asymmetric three-dimensional instabilities that are seldom observed in simulations of splatting on smooth substrates.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 951-956, May 2–4, 2005,
Abstract
View Paper
PDF
The high velocity oxy-fuel (HVOF) combustion spray process has been demonstrated to be a suitable technique for the deposition of nano-reinforced polymer matrix composite coatings by controlling both the particle dwell time and the substrate temperature. HVOF-sprayed polymer matrix composites incorporating reinforcements with size scales ranging from 7 nm to 100 µm are being studied to bridge between the nano and conventional scale regimes. Microstructural characterization has been used to characterize the dispersion and distribution of the ceramic reinforcements within the polymer matrix. The effect of particle size distribution on reinforcement dispersion and distribution has been studied, and the influence of substrate temperature on coating adhesion has also been investigated. Changes in crystallinity, as determined by Differential Scanning Calorimetry (DSC), are being correlated to coating microstructure, reinforcement loading and process parameter variations. Results of optical and scanning electron microscopy, scratch testing and DSC characterization of the feedstock materials and sprayed coatings are presented. Coatings of nominal 60 µm Nylon 11 with 10 vol. % of nano and micron size hydrophilic silica reinforcements exhibited a ~22 % improvements in scratch resistance compared to pure Nylon 11 coatings. An ~15 % improvement in scratch resistance was obtained for coatings containing 10 vol. % nano scale hydrophilic silica reinforcement.