Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
U. Weber
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Self-Healing Plasma Sprayed Ceramic Coatings
Available to Purchase
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 1138-1147, May 11–14, 2015,
Abstract
View Papertitled, Self-Healing Plasma Sprayed Ceramic Coatings
View
PDF
for content titled, Self-Healing Plasma Sprayed Ceramic Coatings
The current paper reports self-healing plasma sprayed Mgspinel (MgAl 2 O 4 ) coatings. The coatings were used for electrical insulation in high temperature fuel cells. A range of potential self-healing additives consisting of SiC+X (where X was BaO, CaO, ZnO, Y 2 O 3 , GeO 2 , Ta 2 O 5 , V 2 O 5 ) were characterized and SiC+Y 2 O 3 was initially selected for coating development. Coatings of spinel with 20wt% additive were developed using vacuum plasma spraying (VPS) or atmospheric plasma spraying (APS). In the developed coatings, self-healing was demonstrated after heat treatment at 1050°C in air for 10 hour. Thermophysical and thermomechanical properties of self-healing coatings were determined and compared to spinel coatings. Lastly, a modelling technique is presented to simulate the effective elastic moduli of the coatings. Numerical results based on microstructural simulations showed good agreement with experimental data.