Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
U. Maier
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 121-126, September 27–29, 2011,
Abstract
View Paper
PDF
SOFCs for mobile applications require short starting times and capability of withstanding several and severe cycles. For such applications metallic cassette type cells with low weight and thermal capacity are beneficial where the active cell part is set in interconnects consisting of two sheets of ferritic steel. These cells are stacked serially to get higher voltage and power. This approach needs interconnect sheets that are electrically insulated from each other to prevent electrical short circuit. The technology discussed here is to use brazed metals, as sealants, and ceramic layers, as electrical insulators, which are vacuum plasma sprayed on the cassette rims. For reliable insulating layers, a variety of deposits were developed, starting from cermet-spinel multilayers with various compositions and constituents, where reactive metals (such as Ti, Zr) were part of the coatings, to pure ceramic layers. The qualities and characteristics of these coatings were investigated which included electric insulation at room temperature and at 800 °C (SOFC operating temperature), wettability of different brazes towards these deposits, phase stability and peeling strength. The single steps of development, characteristics of the insulating layers for SOFCs as well as some challenges that have to be taken into account in the process are described.
Proceedings Papers
ITSC 2008, Thermal Spray 2008: Proceedings from the International Thermal Spray Conference, 83-87, June 2–4, 2008,
Abstract
View Paper
PDF
Solid oxide fuel cells (SOFCs) are one of the options as auxiliary power units (APU) in transportation, e.g. in vehicles or in aircraft. In particular, metal supported SOFCs consisting of metallic frames and substrates coated with plasma sprayed functional layers have shown an excellent stability concerning redox cycling. In order to provide sufficient power, these single cells have to be assembled to stacks. To prevent short-circuiting the frame of each cell has to be electrically insulated from the neighbouring one. For that purpose a ceramic coating is applied on each metal frame by thermal spraying before it is brazed to other stack components. Such layers should at one hand show good wetting and adhesion to the silver based brazing materials. On the other hand it should maintain sufficient electrical resistance even at the fuel cell operating temperature. As the applied solder, which connects the cells and seals the gas manifold simultaneously, is an excellent electrical conductor, it is mandatory to prevent the brazing material from penetrating into the deposit. In this paper a description of the design and experiences with these plasma sprayed insulating layers is given.