Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-4 of 4
Trevan Landin
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2022, ISTFA 2022: Conference Proceedings from the 48th International Symposium for Testing and Failure Analysis, 211-216, October 30–November 3, 2022,
Abstract
View Paper
PDF
Complex failure analysis often requires the use of multiple characterization instruments. For example, a defect or failure may be localized using one tool, whereas the subsequent marking, precision targeting, and high-resolution analysis may require completely different instruments. As a result, the analysis workflows require sample and operator coordination between instruments and engineers, which leads to lower throughput and success rates. This paper describes a complete in-situ workflow for comprehensive failure analysis processes on a compound semiconductor using a state-of-the-art FIB/SEM system, incorporating electron channeling contrast imaging (ECCI) and a STEM-in-SEM detector used in unison with an insertable detector positioned underneath the sample to capture transmitted electron condensed beam electron diffraction (CBED) micrographs.
Proceedings Papers
ISTFA2020, ISTFA 2020: Papers Accepted for the Planned 46th International Symposium for Testing and Failure Analysis, 144-149, November 15–19, 2020,
Abstract
View Paper
PDF
An advanced technique for site-specific Atom Probe Tomography (APT) is presented. An APT sample is prepared from a targeted semiconductor device (commercially available product based on 14nm finFET technology). Using orthogonal views of the sample in STEM while FIB milling, a viable APT sample is created with the tip of the sample positioned over the lightly-doped drain (LDD) region of a pre-defined PFET. The resulting APT sample has optimal geometry and minimal amorphization damage.
Proceedings Papers
ISTFA2019, ISTFA 2019: Conference Proceedings from the 45th International Symposium for Testing and Failure Analysis, 308-312, November 10–14, 2019,
Abstract
View Paper
PDF
The potential benefits and challenges of low kV SEM imaging and EDS elemental analysis have been discussed in the SEM community since at least the early 1990s [1,2]. Concurrent with steady progress in the performance of so-called extreme high-resolution ‘XHR’ SEM imaging [3], is an advancement in low-energy EDS using windowless, large solid angle ‘racetrack’ EDS detectors [4]. As lower kV imaging and EDS analysis becomes accessible, refined models of the interaction of low energy electron beam and real-world samples continues at full speed even today [5].
Proceedings Papers
Plasma FIB DualBeam Delayering for Atomic Force NanoProbing of 14 nm FinFET Devices in an SRAM Array
ISTFA2015, ISTFA 2015: Conference Proceedings from the 41st International Symposium for Testing and Failure Analysis, 388-400, November 1–5, 2015,
Abstract
View Paper
PDF
The result of applying normal xenon ion beam milling combined with patented DX chemistry to delayer state-of-theart commercial-grade 14nm finFETs has been demonstrated in a Helios Plasma FIB DualBeam™. AFM, Conductive-AFM and nano-probing with the Hyperion Atomic Force nanoProber™ were used to confirm the capability of the Helios PFIB DualBeam to delayer samples from metal-6 down to metal-0/local interconnect layer and in under two hours produce a sample that is compatible with the fault isolation, redetection, and characterization capabilities of the AFP. IV (current-voltage) curves were obtained from representative metal-0 contacts exposed by the PFIB+DX delayering process and no degradation to device parameters was uncovered in the experiments that were run. Compared to mechanically delayering samples, the many benefits of using the PFIB+DX process to delayer samples for nano-probing were conclusively demonstrated. Such benefits, include sitespecificity, precise control over the amount of material removed, >100μm square DUT (device under test) area, nm-scale flatness over the DUT area, nm-scale topography between contacts and the surrounding ILD, uniform conductivity across the DUT area, all with no obvious detrimental effects on typical DC device parameters measured by nano-probing.