Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Tom White
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2022, ISTFA 2022: Conference Proceedings from the 48th International Symposium for Testing and Failure Analysis, 289-293, October 30–November 3, 2022,
Abstract
View Paper
PDF
The high temperatures and thermal cycling experienced by integrated circuit packages can induce warpage that in turn can lead to cracks developing at material interfaces that compromise the integrity of electrical traces within the device. In this study, the authors demonstrate how Electro-Optical Terahertz Pulsed Reflectometry (EOTPR) with dynamic temperature control can be used to localize and characterize the resistive faults created by such thermally induced cracks. The EOTPR technique provides quick, reliable, and accurate results, and it allows automatic probing that can be used to generate defect maps for further root cause analysis. The approach demonstrated in this paper shows the significant potential of EOTPR in soft failure characterization and in failure and reliability analysis.
Proceedings Papers
ISTFA2020, ISTFA 2020: Papers Accepted for the Planned 46th International Symposium for Testing and Failure Analysis, 245-249, November 15–19, 2020,
Abstract
View Paper
PDF
A typical workflow for advanced package failure analysis usually focuses around two key sequential steps: defect localization and defect characterization. Defect localization can be achieved using a number of complementary techniques, but electro optical terahertz pulse reflectometry (EOTPR) has emerged as a powerful solution. This paper shows how the EOTPR approach can be extended to provide solutions for the growing complexity of advanced packages. First, it demonstrates how localization of defects can be performed in traces without an external connection, through the use of an innovative cross-sectional probing with EOTPR. Then, the paper shows that EOTPR simulation can be used to extract the interface resistance, granting an alternative way of quantitative defect characterization using EOTPR without the destructive physical analysis. These novel approaches showed the great potential of EOTPR in failure analysis and reliability analysis of advanced packaging.