Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Ting Sun
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2009, ISTFA 2009: Conference Proceedings from the 35th International Symposium for Testing and Failure Analysis, 272-277, November 15–19, 2009,
Abstract
View Papertitled, OBIC Measurements without Lasers or Raster-Scanning Based on Compressive Sensing
View
PDF
for content titled, OBIC Measurements without Lasers or Raster-Scanning Based on Compressive Sensing
Laser-based failure-analysis techniques such as optical beam-induced current (OBIC) or optical beam-induced resistance change (OBIRCH) involve scanning a focused laser beam across a sample by means of a laser scanning microscope (LSM). In this paper, we demonstrate a new method of obtaining OBIC data without requiring a laser or an LSM. Instead, we employ new techniques from the field of compressive sensing (CS). We use an incoherent light source and a spatial light modulator in an image plane of the device under test, supplying a series of pseudo-random on/off illumination patterns (structured illumination) and recording the resulting electrical (photocurrent) signals from the device. Advanced algorithms allow us to reconstruct the signal for the entire die. We present results from OBIC measurements on a discrete transistor and discuss extensions of CS techniques to OBIRCH. We also demonstrate static emission images obtained using CS techniques in which the incoherent light source is replaced with a single-element infrared photon detector so that no detector array is required.