Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Journal
Book Series
Article Type
Date
Availability
1-3 of 3
Tim Stotler
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal: AM&P Technical Articles
AM&P Technical Articles (2016) 174 (1): 26–28.
Published: 01 January 2016
Abstract
View article
PDF
Linear friction welding (LFW) is a solid-state process capable of joining noncircular parts by oscillating one part under load to create frictional heating. From joining railroad rails to producing strong aluminum-to-steel joints, recent advancements in LFW technology are reducing equipment costs and expanding potential uses.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005596
EISBN: 978-1-62708-174-0
Abstract
This article provides information on the practice considerations for the inertia and direct-drive rotary friction welding processes. It presents the tooling and welding parameter designs of these processes. The article discusses the welding of different material family classes to provide a baseline for initial development of a welding parameter set. Common material family classes, including steels, nonferrous metals, and dissimilar metals, are discussed.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001447
EISBN: 978-1-62708-173-3
Abstract
Friction welding (FRW) is a solid-state welding process that uses the compressive force of the workpieces that are rotating or moving relative to one another, producing heat and plastically displacing material from the faying surfaces to create a weld. This article reviews practice considerations for the two most common variations: inertia welding and direct-drive friction welding. Direct-drive friction welding differs from inertia welding, primarily in how the energy is delivered to the joint. The article discusses the parameter calculations for inertia welding and direct-drive friction welding. It provides information on friction welding of carbon steels, stainless steels, aluminum-base alloys, and copper-, nickel-, and cobalt-base materials.