Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Thomas J. Barbieri
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Vanishing TiN ARC Coating as an Indicator of EOS in Aluminum Top Metal Lines
Available to Purchase
ISTFA2006, ISTFA 2006: Conference Proceedings from the 32nd International Symposium for Testing and Failure Analysis, 461-468, November 12–16, 2006,
Abstract
View Papertitled, Vanishing TiN ARC Coating as an Indicator of EOS in Aluminum Top Metal Lines
View
PDF
for content titled, Vanishing TiN ARC Coating as an Indicator of EOS in Aluminum Top Metal Lines
Multiple parts failed during a 96 hour HAST (highly accelerated stress test) run. Electrical failure occurred on several pins stressed at 48V during the run. Visual inspection identified possible corrosion damage occurring on a top layer aluminum metal line linked to the failed pins. Additionally, significant lengths of this line and metallization at six other sites appeared white and reflective when viewed through an optical microscope. The device technology utilized a TiN ARC. Aluminum metal with a TiN ARC has a dull, amber color when viewed through an optical light microscope, as opposed to bare aluminum, which appears white and shiny. The initial assumption was that the passivation had lifted off during mold compound removal, along with the top TiN ARC layer at these seven locations. SEM inspection found that final passivation film was still intact over these shiny Al lines, but it was cracked extensively. Neighboring Al lines did not show cracked passivation. A hypothesis was generated that suggested that the TiN ARC was not removed, but rather was altered in some way so as to change its optical appearance. The change in the TiN was believed to be due to a combination of factors that resulted from electrical overstressing of the lines during HAST. A series of experiments utilizing FIB cross-sections, Auger mapping, Auger depth profiling, TEM inspection and EDS were used to show that the TiN ARC layer was still present on the affected lines but had been oxidized. The conclusions drawn from this investigation can be used to rapidly determine the root cause of failure through signature analysis. Shiny Al metal lines are easy to see with optical microscopes and are therefore a useful failure analysis tool to identify electrically and mechanically overstressed lines and circuits.
Proceedings Papers
Deprocessing of Integrated Sealing Structures from MEMS Devices for Failure Analysis
Available to Purchase
ISTFA2005, ISTFA 2005: Conference Proceedings from the 31st International Symposium for Testing and Failure Analysis, 416-421, November 6–10, 2005,
Abstract
View Papertitled, Deprocessing of Integrated Sealing Structures from MEMS Devices for Failure Analysis
View
PDF
for content titled, Deprocessing of Integrated Sealing Structures from MEMS Devices for Failure Analysis
Freescale Semiconductor is employing a new, multi-layer integrated seal (IS) on its next generation accelerometers. The IS, which encloses the moveable sensing element, consists of alternating layers of poly-Si and PSG. A technique needed to be developed to remove the integrated seal in order to permit failure analysis. Mechanical methods were attempted first, but these resulted in severe damage to the sensing element. Chemical deprocessing was considered, but eventually abandoned because there seemed to be no way to protect the sensing elements from the wet etchants that would be used on the IS. Eventually, Reactive Ion Etching (RIE) with an Inductively Coupled Plasma (ICP) source proved to be a successful means for removing the IS without impacting the sensing element. As the design of the integrated seal underwent multiple redesigns, the removal process was successfully modified multiple times to comply with these changes. By using the right gases in the correct order, a high level of selectivity was maintained, allowing for removal of successive layers of different materials (poly-Si, PSG) without harming the sensing element. After removal of some IS designs, a wispy residue was observed on the sensing element and remaining IS support pillars. Chemical analysis identified this material as a by-product of the RIE process, and methods were devised to eliminate it.