Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Thiri Htun
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2014, ISTFA 2014: Conference Proceedings from the 40th International Symposium for Testing and Failure Analysis, 446-449, November 9–13, 2014,
Abstract
View Papertitled, Determination of the Source of an Electrical Overstress Event to a Digital Variable Gain Amplifier Module
View
PDF
for content titled, Determination of the Source of an Electrical Overstress Event to a Digital Variable Gain Amplifier Module
This paper presents a systematic approach of failure analysis to determine the source of electrical overstress condition to a digital variable gain amplifier (DVGA) module where the failure was due to attenuation accuracy. Having consideration of the physical evidence on the failed devices and the root cause of the failure gives an insight of how the mechanical damage caused an electrical overstress exposure to the devices. The paper provides information on destructive analysis and non-destructive analysis conducted for determining the root cause of the failure of the DVGA module. Analysis revealed that devices failed due to an electrical overstress exposure through mechanical damage to the passivation of the metal-2 lines. The mechanical damage occurred during die-sort testing due to misalignment of the probes which delivered unintended electrical stress to the devices.