Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Journal
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Takeshi Nokuo
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal: EDFA Technical Articles
EDFA Technical Articles (2009) 11 (2): 16–22.
Published: 01 May 2009
Abstract
View article
PDF
This article discusses the advantages of SEM-based nanoprobing and the various ways it can be used to locate defects associated with IC failures. It describes the basic measurement physics of electron beam induced current, absorbed electron, and voltage distribution contrast imaging and presents examples showing how the different methods are used to isolate low- and high-resistance sites, shorts, and opens as well as ion implantation and metal patterning defects.
Proceedings Papers
ISTFA2007, ISTFA 2007: Conference Proceedings from the 33rd International Symposium for Testing and Failure Analysis, 188-190, November 4–8, 2007,
Abstract
View Paper
PDF
This paper describes the detection range of two failure site localization methods developed by the authors. One method, known as the absorbed current image (AEI) technique, is ideally suited for analyzing test element group interconnects on a huge scale, while the other method, known as voltage distribution contrast (VDIC), works best for interconnects in actual devices which have relatively low resistance.