Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
T.M. Eiles
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2015, ISTFA 2015: Conference Proceedings from the 41st International Symposium for Testing and Failure Analysis, 267-269, November 1–5, 2015,
Abstract
View Paper
PDF
Infrared emission microscopy (IREM) is often the simplest and fastest fault isolation technique. In contrast to emission microscopy, laser-based techniques, such as thermally induced voltage alteration and light induced voltage alteration (LIVA), are not as dependent on leakage or the specific voltage of the defect to provide localization but are able to observe variations in the defective current drawn by the defect. This paper describes a method of applying LIVA to synthesized logic connected to large-scale power plane by controlling the amount of decoupling capacitance on the power supply. This has proven to provide very useful fault isolation beyond what is possible with emission microscopy. The logic LIVA result allowed the determination of locations of the two emissions seen in the IREM image as well as the word-line driver. This result provides a complete picture of the failure exact word-line driver-simplified physical failure analysis.
Proceedings Papers
ISTFA2014, ISTFA 2014: Conference Proceedings from the 40th International Symposium for Testing and Failure Analysis, 299-303, November 9–13, 2014,
Abstract
View Paper
PDF
We present the first known images acquired using near-field scanning optical microscopy (NSOM) through backside silicon on functional integrated circuit samples with higher resolution than conventional fault isolation (FI) tools. NSOM offers the possibility of substantially-improved lateral resolution independent of excitation wavelength. Current FI techniques have challenged the resolution limits of conventional optics technology, even in the best solid immersion lens (SIL) to date. This poses a problem for future process technology nodes. This resolution barrier is a by-product of the diffraction limit. In Fourier terms, a conventional lens filters out highfrequency information and thus limits the resolution. In NSOM, by placing a tip with an aperture in extreme proximity to the surface it is possible to capture the near-field light that contains high-frequency information, thereby circumventing the diffraction limit. The tangible benefit is that the resolution is substantially improved. We show that NSOM can be used in backside subsurface imaging of silicon, mirroring the paradigm used in typical optical FI. We present optical reflectance data through ~100 nm of remaining backside Si on functional 22 nm CMOS IC parts with lateral resolution approaching 100 nm. We then discuss potential methods for using NSOM in practical backside fault isolation applications and for improving signal-to-noise ratio (SNR).