Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
T.F. Linke
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 1191-1198, May 11–14, 2015,
Abstract
View Paper
PDF
Thermally sprayed Fe-based coatings reinforced by TiC particles are a cost effective alternative to carbide coatings such as WC/CoCr, Cr 3 C 2 /NiCr and hard chrome coatings. They feature a good wear resistance and, with sufficient amount of alloying elements like Cr and Ni, also a high corrosion resistance. In hydraulic systems the piston is coated for protection against corrosion and wear. New water-based hydraulic fluids require an adaption of the coating system. In order to investigate the wear and corrosion resistance of Fe/TiC a novel powder consisting of a FeCr27Ni18Mo3 matrix and 34 wt.-% TiC was applied by HVOF and compared to reference samples made of WC/CoCr (HVAF) and hard chrome. Besides an in-depth coating characterization (metallographic analyses, EMPA), wear resistance was tested under reverse sliding in a water-based hydraulic fluid. Corrosion resistance was determined by polarization in application-oriented electrolytes (hydraulic fluid at 60 °C, artificial sea water at RT).
Proceedings Papers
ITSC 2013, Thermal Spray 2013: Proceedings from the International Thermal Spray Conference, 564-569, May 13–15, 2013,
Abstract
View Paper
PDF
Lightweight gamma titanium aluminide (γ-TiAl) intermetallic alloys have recently found application in low-pressure turbine blades in the aviation industry, but their use is currently limited to around 700 °C due to oxidation. This study evaluates the potential of various multilayer coating systems to increase the operating temperature range of γ-TiAl. The coating systems tested are based on a CoNiCrAlY topcoat for oxidation protection and a YSZ diffusion barrier, both applied by atmospheric plasma spraying using a three-cathode torch. Two bond coats, NiCrBSi and CoNiCrAlY, were also tested. Test specimens with bond coats withstood 1000 h of exposure at 900 °C without delamination and no detectable oxygen at the coating-substrate interface. Samples produced with varying feed rates showed that graded coatings can be achieved using the APS process.