Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
T. Ueno
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Enhanced Scanning Nonlinear Dielectric Microscopy with Stepwise dC/dV and dC/dz Imaging—Achieving Qualitative, Quantitative and Artifact-Free Carrier Density Profiling of Semiconductor Devices
Available to Purchase
ISTFA2018, ISTFA 2018: Conference Proceedings from the 44th International Symposium for Testing and Failure Analysis, 538-542, October 28–November 1, 2018,
Abstract
View Papertitled, Enhanced Scanning Nonlinear Dielectric Microscopy with Stepwise dC/dV and dC/dz Imaging—Achieving Qualitative, Quantitative and Artifact-Free Carrier Density Profiling of Semiconductor Devices
View
PDF
for content titled, Enhanced Scanning Nonlinear Dielectric Microscopy with Stepwise dC/dV and dC/dz Imaging—Achieving Qualitative, Quantitative and Artifact-Free Carrier Density Profiling of Semiconductor Devices
High-resolution and high-sensitivity detection of free carriers in semiconductors is critical due to the trend of device miniaturization and diversification. To address this need, the AFM-based techniques of scanning spreading resistance microscopy, scanning capacitance microscopy, scanning nonlinear dielectric microscopy (SNDM), scanning microwave impedance microscopy, and scanning microwave microscopy are used. This paper demonstrates enhanced SNDM with stepwise dC/dV and dC/dz imaging, qualitative analysis, quantitative analysis, and artifact-free carrier-density profiling of semiconductor devices. The trace mode in enhanced SNDM is switched between contact (dC/dV measurement) state and non-contact (dC/dz measurement) state for every line scan whereby the sampling intelligent scan mode is switched these states every pixel. Using IMEC Si standards and Si power MOSFET as examples demonstrates that this SNDM methodology can provide qualitative, quantitative, and artifact-free carrier density profiling of semiconductor devices.
Proceedings Papers
Change in Graphite Carbon Structure of Cast Iron Coatings through Different Spray Flame Situations
Available to Purchase
ITSC 2007, Thermal Spray 2007: Proceedings from the International Thermal Spray Conference, 843-848, May 14–16, 2007,
Abstract
View Papertitled, Change in Graphite Carbon Structure of Cast Iron Coatings through Different Spray Flame Situations
View
PDF
for content titled, Change in Graphite Carbon Structure of Cast Iron Coatings through Different Spray Flame Situations
Graphitization behavior of water-atomized cast iron powder at each thermal spraying step, such as droplet flight, droplet impingement and splat layering, was successively examined. Both as-atomized cast iron powder and coatings sprayed with the powder contain no graphite structure owing to their rapid solidification. A short period of pre-annealing at 1173 K allows the formation of graphite structure in the cast iron powder, in which there exist precipitated graphite of 3.58 mass%. The microstructure observation exhibits that pre-existed pores in the as-atomized powder strongly affect the precipitating sites of graphite, that is, mainly inside the individual powder instead of the surface. However, marked reduction in graphite structure occurs to coatings sprayed with the pre-annealed powder because of in-flight burning and dissolution into molten iron. In-process post-annealing at 773 K for 60 s reveals the formation of graphite structure resulted from the decomposition of iron based metastable carbide in splats and coatings sprayed with the as-atomized powder. Chemical analysis demonstrates that graphitization level of post-annealed cast iron coatings is higher than that of coatings sprayed with the pre-annealed powder. Precipitated intersplat graphite structure of 1.68 mass% appears in cast iron coatings when introducing methane as a powder feeding carrier gas which is liable to decompose in plasma flame. The resultant coatings with graphite structure embedded in hard matrix are anticipated to offer superior wear resistance in comparison to centrifugally cast iron containing flaky graphite of 1.76 mass%.
Proceedings Papers
Cast Iron Coatings Containing Graphite Structure by Atmospheric Plasma Spraying
Available to Purchase
ITSC 2004, Thermal Spray 2004: Proceedings from the International Thermal Spray Conference, 298-303, May 10–12, 2004,
Abstract
View Papertitled, Cast Iron Coatings Containing Graphite Structure by Atmospheric Plasma Spraying
View
PDF
for content titled, Cast Iron Coatings Containing Graphite Structure by Atmospheric Plasma Spraying
The excellent wear-resistant performance of cast iron coatings considerably depends on the formation of graphite structure with an inherent self-lubricating property. In the present study, two types of cast iron powders produced by gas- (GA) and water-atomization (WA) were deposited on an aluminium alloy substrate by atmospheric DC plasma spraying. WA powders are generally characterized by high oxygen content, irregular appearance and inexpensiveness compared with those of GA powders. Although alloying elements of silicon and aluminium work as a strong graphitizer and anti-oxidizer, graphite structures are not recognized in coatings sprayed with as-atomized high silicon and aluminium powders. Therefore, either pre-annealing of powders or post-annealing of coatings is required to achieve cast iron coatings containing graphite structure. A marked decrease in graphite occurs to the coatings with pre-annealed GA powder, since there exists precipitated graphite mainly on a GA powder surface. A short period of post-annealing is also valuable for graphitization. The weak oxide layers are observed in coating cross-sections with GA and WA powder, however, their oxidized levels are much lower than those with bearing steel powder containing low silicon and aluminium. Hence, graphitized cast iron coatings sprayed with inexpensive WA powder exhibit a splendid anti-wear performance.