Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
T. Ostrom
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 1113-1118, May 15–18, 2006,
Abstract
View Paper
PDF
A simulated environment erosion test platform consisting of a control chamber, a modified HVOF gun, and a programmable logic control module is presented. This robust equipment can vary angles of impingement from 0-90 degrees, erodent velocities up to 300 m/s, and temperatures exceeding 2000°C. The erodent velocity, flow rates and temperatures are directly measured employing a high speed camera, and a DPV/CPS 2000 particle flight diagnostic sensor in contrast to estimates typically reported in the literature. It is demonstrated that, although the gas jet type erosion test apparatuses are frequently used in laboratories, quantitative parameter characterization is essential for setting up a test protocol. Both room and high temperature tests have been performed on this test bed. It is believed that the quantitative characterization of test parameters would greatly assist the designer in choosing and developing the appropriate erosion resistant coatings for their application.
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 1231-1236, May 15–18, 2006,
Abstract
View Paper
PDF
Functionally graded material (FGM) designs aim to combat challenges posed by harsh and conflicting operational requirements. There is a great demand for manufacturing technologies that can fabricate net-shape components incorporating the FGM design concepts. The focus of this paper is on the development of net-shape components incorporating functionally gradient material designs. This novel manufacturing scheme combines the use of re-useable mandrels to generate complex shapes with a unique thermal spray process called “hybrid spray” that can deposit functionally designed materials. This generic hybrid spray process combines arc spraying with either high velocity oxy-fuel (HVOF) or plasma spraying (APS). The resulting benefits are; ability to achieve continuous composition variation, high deposition rates combined with the high coating densities. The multi-material component designs aim to provide cost as well as performance advantages. The geometric resolution and dimensional accuracy of these functional components are presented. This paper also reports results on material compatibility and process parameter development tests. Functional properties such as high temperature resistance and thermal fatigue performance are also reported.