Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
T. Oshima
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC1998, Thermal Spray 1998: Proceedings from the International Thermal Spray Conference, 1115-1120, May 25–29, 1998,
Abstract
View Paper
PDF
Fatigue properties of the Al 2 O3 plasma-sprayed SUS316L stainless steel rod specimens coated on different spraying conditions have been studied in a physiological saline solution (0.9 % NaCl solution) to evaluate the potential of surgical implant application. Fatigue tests were conducted in push-pull loading at the stress ratio of R = -1, and frequency of 2 Hz. Microstructure related with fatigue damage was examined by SEM and TEM. The fatigue strength of Al 2 O 3 plasma-sprayed metals significantly depended on spraying conditions: the effects of spraying on fatigue strength decreased with increasing the applied stress amplitude. As-blasted specimens were higher in fatigue strength than Al2O3 plasma-sprayed specimens. It was found that the plasma spraying had significant effects on fatigue crack growth behavior in the early stage of crack propagation. Fatigue cracks preferentially originated from dents that had been caused on the substrata metal surface subjected to grit-blasting. These results are discussed with both the compressive residual stresses due to the grit blasting which was carried out prior to plasma spraying and the corrosion-resistance of the alumina deposit.