Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 20
T. Lampke
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 336-342, April 29–May 1, 2024,
Abstract
View Paper
PDF
Thermally sprayed coatings of self-fluxing alloys are mainly fused using an autogenous flame. This subsequent fusing step reduces the porosity of the coating and achieves a pronounced metallurgical bonding. Therefore, an enhancement of the coating adhesion and intersplat cohesion as well as the corrosion and wear resistance are achieved. During this non-automated fusing step, the coating quality is significantly influenced by the operator's handling of the flame fusing process. By means of an alternative fusing using laser, can improve the reproducibility and automatability. In this work, the effect of different laser parameter settings and structural defects on fusing depth, microstructure evolution and tribological properties of thermally sprayed self-fluxing coatings and bulk materials is discussed. Gas atomized powder of conventional NiCrBSiFe self-fluxing alloy was processed by powder flame spraying and by spark-plasma sintering (SPS) as reference state. The findings reveal the potential of laser fusing to achieve a significant improvement in the coating quality and property profile of a wide variety of initial structures related to the process conditions.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 504-510, May 4–6, 2022,
Abstract
View Paper
PDF
The adaptation of medium-entropy alloys (MEAs) by minor alloying constituents allows a targeted modification of the property profile of this material class for surface protection applications. In the present work, the potential of BSiC additions in the MEA system CrFeNi as base for adapted feedstock materials for thermal spraying is investigated. The alloy development was carried out in an electric arc furnace. Compared with the initial alloy, a significant increase in the wear resistance of the castings was demonstrated for the adapted alloy composition. Subsequently, powder was produced and characterized by inert gas atomization, followed by processing via high velocity oxy-fuel (HVOF) spraying. The tribological behavior was evaluated comparatively for all manufacturing variants considered. A good agreement in the property profile was determined, confirming the basic alloy development approach based on metallurgical processes. The evaluation of the process-structure property relationships confirms the great potential of adapted alloy systems for complex alloys in the field of surface engineering.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 723-728, May 4–6, 2022,
Abstract
View Paper
PDF
The development of thermal spray processes usually requires an analysis of the complex coating microstructure. In order to inspect critical areas of a coating, destructive testing methods such as the preparation of cross-sections are commonly used. In this work, the suitability of largely non-destructively measured polarisation curves for the quality assessment of thermal sprayed AISI 316L coatings is investigated. Therefore, a 3.5 % NaCl gel electrolyte was developed to prevent the corrosive medium from infiltrating the porous and micro-cracked microstructure characteristic for thermal sprayed coatings. In addition, a measuring cell based on the 3-electrode arrangement was designed to simplify the setup, reduce the measurement time and enable mobile measurements directly on the component surface at a later stage of development. The effects of process-related differences in the microstructure of HVAF and APS AISI 316L coatings on the polarisation curve was investigated by determining the corrosion current density. The microstructure of the AISI 316L coatings was analysed by optical microscope, SEM and EDS, focussing on the porosity and oxide content. The results clearly show that the potentiodynamic polarisation curves of the AISI 316L coatings differ significantly depending on the spray process used and microstructure created. Even small changes in the oxide content within a coating can be detected. Therefore, electrochemical measurement methods using gel electrolyte offer an interesting opportunity to evaluate the quality of thermal sprayed AISI 316L coatings in a largely non-destructive manner.
Proceedings Papers
ITSC 2022, Thermal Spray 2022: Proceedings from the International Thermal Spray Conference, 809-814, May 4–6, 2022,
Abstract
View Paper
PDF
The addition of refractory metals represents a promising development approach for future high-entropy alloys (HEAs). Niobium and molybdenum are particularly suitable for increasing hardness as well as wear and corrosion resistance. In the context of surface protection applications, eutectic alloys with their homogeneous property profile are of particular interest. In the present work, two eutectic HEAs (EHEAs) were developed for the starting Al 0.3 CoCrFeNi using electric arc furnace. Following mechanical and microstructural characterization, the two alloys Al 0.3 CoCrFeNiMo 0.75 and Al 0.3 CoCrFeNiNb 0.5 were identified. For thermal spray processing, powders were prepared by inert gas atomization. The coatings produced by high velocity oxy-fuel (HVOF) spraying were characterized and evaluated comparatively to the castings, allowing process-structure-property relationships to be derived. Based on the results, statements on possible application potential can be made.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 569-577, May 24–28, 2021,
Abstract
View Paper
PDF
Assemblies containing fiber-reinforced plastic (FRP) and metal parts are typically fastened together via mechanical joining or adhesive bonding. Mechanical joining processes tend to weaken FRP parts by cutting fibers, while adhesives require long cures and often lead to inseparable material compounds. This paper evaluates a new joining method in which plastic parts are laser treated, then metallized via wire-arc spraying, and finally soldered to mating metal parts using a low-temperature process. Due to the effective increase in interface area resulting from laser structuring, bond strengths of up to 15.5 MPa can be achieved.
Proceedings Papers
ITSC 2019, Thermal Spray 2019: Proceedings from the International Thermal Spray Conference, 761-767, May 26–29, 2019,
Abstract
View Paper
PDF
In this investigation, thermally sprayed cylindrical specimens are machined by turning with different cutting speeds. To ensure that process-induced shearing loads do not cause delamination, a fine helical dovetail structure is cut into the substrate before it is coated with FeCrNi alloy by air plasma spraying. Dovetail structures with different geometries were produced and their effectiveness is compared. The finish-machined surfaces of the FeCrNi coatings were examined and characterized with respect to feed marks, cracks, open pores, pull outs, and residual stresses. It is shown that surface roughness and the number of pull outs decrease with increasing cutting speed while residual stresses remain relatively unchanged, except for the orientation of the first principal stress.
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 90-97, June 7–9, 2017,
Abstract
View Paper
PDF
The present work summarizes the most important results of a research project dealing with the comprehensive!! investigation of the bonding mechanisms between cold sprayed Al coatings and various poly- and monocrystalline ceramic substrates (Al 2 O 3 , AlN, Si 3 N 4 , SiC, MgF 2 ). Due to their exceptional combination of properties, metallized ceramics are gaining more and more importance for a wide variety of applications, especially in electronic engineering. Cold spraying provides a quick, flexible and cost-effective one-step process to apply metallic coatings on ceramic surfaces. However, since most of the existing cold spray-related publications focus on metallic substrates, only very little is known about the bonding mechanisms acting between cold sprayed metals and ceramic substrates. In this paper, the essential factors influencing the bonding strength in such composites are identified. Besides mechanical tensile strength testing, a thorough analysis of the coatings and especially the metal/ceramic interfaces was conducted by means of HRTEM, FFT, STEM, EDX, EELS, XRD and EBSD. The influence of substrate material, substrate temperature and particle size is evaluated with regard to the observed bonding behavior. The results suggest that, apart from mechanical interlocking, the adhesion of cold sprayed metallic coatings on ceramics is based on a complex interplay of different mechanisms such as quasi-adiabatic shearing, static recrystallization as well as heteroepitaxial growth.
Proceedings Papers
ITSC 2017, Thermal Spray 2017: Proceedings from the International Thermal Spray Conference, 200-204, June 7–9, 2017,
Abstract
View Paper
PDF
The alloying concept of High-Entropy Alloys (HEA) has attracted much scientific interest due to an interesting combination of properties. Previous investigations have shown that high hardness and strength, comparable to bulk metallic glasses, can be achieved. Furthermore, HEAs show distinct ductility and good high-temperature resistance. First investigations on tribological properties are indicating high wear resistance. Previous investigations of the alloy system AlCoCrFeNiTi in bulk state have shown promising properties. Therefore, the alloy AlCoCrFeNiTi with equimolar composition was selected for transferring bulk properties to thermally sprayed coatings. The focus of this contribution is on studying tribological properties of thermally sprayed HEA coatings to enlarge the field of possible applications. Feedstock material production was carried out by high-energy ball milling (HEM) and inert gas atomization. Subsequently, coatings were deposited by Atmospheric Plasma Spray (APS). Tribological properties of the coatings under different wear regimes were investigated in ball-on-disk wear tests, oscillating wear tests and scratch tests. The tribological properties are compared with a conventional hard chrome plating and correlated with microstructure.
Proceedings Papers
ITSC2016, Thermal Spray 2016: Proceedings from the International Thermal Spray Conference, 156-160, May 10–12, 2016,
Abstract
View Paper
PDF
In this investigation, an air plasma sprayed TBC system consisting of a CoNiCrAlY bond coat (BC) and a YSZ topcoat (TC) is produced with a PVD AlOx interlayer in order to study its effect on thermally grown oxides. For comparative purposes, a reference TBC without the AlOx interlayer was also prepared and studied. A cyclic thermal load was applied to both systems and the coatings were examined after 6, 12, 24, 40, and 80 cycles. Crack lengths were measured in the YSZ layer and TGO thicknesses were assessed at the BC-TC interface. An examination of coating microstructures revealed the expected mixed-mode failure in both TBCs. In comparison to the reference TBC, the system with the AlOx interlayer showed reduced crack formation in the TC and slowed TGO formation at the BC-TC interface both during and after thermal treatment.
Proceedings Papers
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 544-552, May 11–14, 2015,
Abstract
View Paper
PDF
The present work builds on investigations of cold gas-sprayed Al coatings on Al 2 O 3 , which strongly indicated that heteroepitaxial growth is a possible mechanism supporting the adhesion between metal and ceramic at their interface. The present study was focused on the deposition of Al on further ceramic substrates (AlN, Si 3 N 4 and SiC). In particular, it should be clarified whether the different ionicity of the chemical bonding in these substrate materials influences the interface formation or not. Aluminum coatings were deposited alternatively by using cold-gas spraying (CGS) and magnetron sputtering. In CGS coatings, the effect of substrate roughness, substrate temperature and powder fraction on the adhesion of the coating was investigated. The magnetron-deposited coatings were used to evaluate the role of the heteroepitaxy in the interface formation and to identify microstructure defects in the metal/ceramic interface, which are caused solely by the lattice misfit between the counterparts and not by the impact-induced deformation that is typical for cold gas-sprayed coatings. Interface characterization was conducted by scanning electron and high resolution transmission electron microscopies combined with XRD.
Proceedings Papers
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 873-877, May 11–14, 2015,
Abstract
View Paper
PDF
The physical characteristics and volume growth of TGOs in TBC systems lead to TBC failure. It is proved that enriching the BC/TC interface with α-Al 2 O 3 is beneficial to an extended operational time by prolonging the steady-state growth stage of the TGO. The corresponding phase reactions in TBC systems with heightened Al activity, however, are not studied yet. In this work, the stage formation of TGO layers of TBC systems with PVD-Al interlayers is described. The study uses thermal cyclic loading with dwell time at maximum high temperature of 1,150 °C. The crack formation in the ceramic top coat and the TGOs thickness at the interface are investigated by SEM/EDS after 1, 6, 12, 24, 40 and 80 thermal cycles. The results plot the interface change and crack formation as a function of the thermal cycle number. The corresponding failure mode is discussed.
Proceedings Papers
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 273-278, May 21–23, 2014,
Abstract
View Paper
PDF
Thermal barrier coatings typically incorporate a YSZ topcoat and a metallic bond coat. During service, a reaction zone consisting of different thermally grown oxides forms at the interface. Although most such oxides are detrimental, one (α-Al 2 O 3 ) improves service life due to its barrier effect on oxygen diffusion. In this study, Al and AlOx films are deposited on metallic bond coats by dc magnetron sputtering prior to topcoat deposition. The resulting TBCs were thermally cycled to determine the effect of the interlayer films on service life and TGO formation. It is shown that the Al films transform in situ into dense Al 2 O 3 layers that act as oxygen diffusion barriers. TBCs with interlayer alumina, whether deposited directly or formed in situ, showed less cracking and were more mechanically stable during thermal cycle tests.
Proceedings Papers
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 379-384, May 21–23, 2014,
Abstract
View Paper
PDF
This work investigates the adhesion mechanisms associated with cold gas sprayed metallic coatings on ceramic substrates. Aluminum layers were deposited on sintered corundum plates and single-crystalline sapphire substrates with different lattice orientations. Examination of the interface region showed that adhesion was the result of recrystallisation and heteroepitaxial growth. Cold spray aluminum coatings were also deposited on Al 2 O 3 , AlN, Si 3 N 4 , and SiC substrates to determine if ionic bonding plays a role in interface formation. For comparison, aluminum coatings produced by physical vapor deposition were also examined.
Proceedings Papers
ITSC2014, Thermal Spray 2014: Proceedings from the International Thermal Spray Conference, 860-865, May 21–23, 2014,
Abstract
View Paper
PDF
This study evaluates the friction and wear behavior of iron-base coatings produced by arc spraying using experimental cored wires. Coating microstructure was analyzed and various wear tests were performed. The results show that the tribological properties of the ferrous coating materials are greatly affected by porosity, oxide inclusions, particle shape, and microhardness.
Proceedings Papers
High-Temperature Oxidation-Resistant Thermal Spray Coatings Based on MoSi 2 for Furnace Applications
ITSC 2013, Thermal Spray 2013: Proceedings from the International Thermal Spray Conference, 47-50, May 13–15, 2013,
Abstract
View Paper
PDF
The aim of this work is to optimize molybdenum disilicide coatings for high-temperature oxidation protection of metallic surfaces. Agglomerated and sintered MoSi2 powder was deposited on test substrates by atmospheric plasma spraying. The powders and coatings were characterized by means of optical and scanning electron microscopy. Various tests were carried out to determine the influence of powder size and spray parameters on coating porosity, hardness, and adhesive pull strength.
Proceedings Papers
ITSC2012, Thermal Spray 2012: Proceedings from the International Thermal Spray Conference, 87-92, May 21–24, 2012,
Abstract
View Paper
PDF
Due to its low weight and excellent dimensional stability, carbon fibre-reinforced carbon (C/C) gains more and more importance as construction material for light-weight charging racks in industrial furnaces. However, for high-temperature applications above 1,000 °C, C/C has to be protected with a diffusion-inhibiting coating in order to avoid an undesired carburization of components which are in contact with the charging rack. In the present work, coatings were produced by means of atmospheric plasma spraying (APS) and powder flame spraying (PFS). The ceramic powders Al 2 O 3 , Al 2 O 3 /Cr 2 O 3 , Al 2 O 3 /TiO 2 and yttria stabilized zirconia (YSZ) were used as coating materials, while molybdenum and silicon carbide served as adhesion-promoting intermediate layers. In order to reduce the residual stresses in the ceramic coatings, specimens with a defined segmented surface structure were compared with conventional closed coatings. Long-term high-temperature tests in several atmospheres were conducted on laboratory scale as well as in industrial practice.
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 104-108, September 27–29, 2011,
Abstract
View Paper
PDF
Suspension plasma spraying is a process which enables production of finely grained nanometric or submicrometric coatings. The suspensions were formulated with the use of fine powder of ceramic particles of yttria stabilized zirconia in water with alcohol. The present paper focuses on the theoretical analysis of the formation process of sintering of fine solids impacting the growing coating’s surface. The heat flux input to the coatings was estimated and their surface temperature at spraying was measured. The theoretical analysis of sintering during the coating’s growth was carried out. The different models of sintering were analyzed and adapted to the suspension plasma spraying conditions. The model of surface diffusion was found to be the most appropriate to describe the sintering during suspension plasma spraying. The formation of the necks having the relative size equal to 10 % of the particle diameter was found to be possible during the coatings deposition.
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 863-868, September 27–29, 2011,
Abstract
View Paper
PDF
Cermets like WC/Co or Cr 3 C 2 /Ni20Cr are well-established materials for thermally sprayed wear protection coatings. However, their high price and the adverse health effects of nickel and cobalt cause the motivation for the development of novel materials with excellent wear resistance. Within the AiF/DFG research cluster “Thermal Spraying”, a multi-institutional cooperation of various German research centres, the focus is put on particle-reinforced iron-based composite alloys. High-alloyed steels serve as matrix materials into which hard CrB 2 particles are incorporated by means of high-energy ball milling (HEM). By adjusting appropriate milling parameters, the microstructure of the powder and its level of amorphisation can be influenced effectively. The high-velocity oxygen fuel process (HVOF) allows a transfer of the desired nanocrystalline structure from the particles to the coatings. The deposited coatings exhibit low porosity and high microhardness values of more than 1000 HV0.3. The wear resistance of the coatings was determined by means of Miller test (ASTM G75-01) and compared with conventional wear protection materials and coatings produced with agglomerated and sintered powders. The obtained outstanding results qualify particle-reinforced iron-based materials as a promising alternative for a wide range of applications.
Proceedings Papers
ITSC 2011, Thermal Spray 2011: Proceedings from the International Thermal Spray Conference, 934-937, September 27–29, 2011,
Abstract
View Paper
PDF
The most recent increase in turbine entry temperature (TET) can be obtained by the use of Thermal Barrier Coatings (TBCs) on cooled hot section components. The TBC systems are comprised of Ni-based super-alloy substrate which provides certain mechanical properties and blade geometry consisting of a ceramic top coat with low thermal conductivity applied to a metallic bond coat resulting in a significant temperature drop across the coating. The bond coat provides oxidation resistance and adherence of the top coat to the substrate. In this study different bond coat layers were applied on carbon steel substrates which were covered by yttria stabilized zirconia (YSZ) as a top coat layer using atmospheric plasma spray technique (APS). Al-12%Si and Al 99% were deposited by cold gas dynamic spray technique (CGDS) while Ni-5%Al layer was deposited by high velocity oxy fuel technique (HVOF). Heat treatment was performed on the samples under controlled atmosphere for 15 hrs. The microstructure and micro hardness of as sprayed and after heat treatment samples were investigated. Adhesion strength for top coat / bond coat interface and bond coat / substrate interface were investigated. The residual stresses for as sprayed and after heat treatment was estimated by XRD measurement on the top coat layer with different bond coat material. The results indicate that the adhesion strength either for as sprayed or after heat treatment was enhanced using this new bond coat materials compared to the traditionally as deposited Ni Co Cr Al Y bond coat material.
Proceedings Papers
ITSC 2010, Thermal Spray 2010: Proceedings from the International Thermal Spray Conference, 278-282, May 3–5, 2010,
Abstract
View Paper
PDF
Thermally sprayed alumina coatings are widely used in a range of industrial applications to improve wear and erosion resistance, corrosion protection and thermal insulation of metallic surfaces. These properties are required for many components for production processes in the paper and printing industry. By means of efficient and adjustable coating processes, long-term use of the refined surfaces is obtained. It can be seen that cost-efficient arc-sprayed Al coatings post-treated by plasma-electrolytic oxidation (PEO) form Al 2 O 3 -layers with outstanding hardness, bonding strength, abrasion and corrosion resistance as well as extended service time. These coatings are designed to partially replace hard chromium.