Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
T. Ishitani
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA1999, ISTFA 1999: Conference Proceedings from the 25th International Symposium for Testing and Failure Analysis, 449-453, November 14–18, 1999,
Abstract
View Paper
PDF
A new focused-ion-beam (FIB) micro(μ)-sampling technique has recently been developed to facilitate transmission electron microscope (TEM) specimen preparation, while allowing chips or wafer samples to remain intact. A deep trench is FIB-milled to dig out a small, wedge-shaped portion of the sample (or a microwedge) from the samples area of interest, leaving a small, brige-shaped portion (or a microbridge) to support the microwedge. A metal needle is then manipulated into position for lifting the microwedge, i.e., the μ-sample. FIB-assisted deposition (AD) is used to bond the needle to the μ-sample. FIB-milling of the microbridge then separates the μ-sample from the chip or wafer. The separated μ-sample is mounted onto a TEM grid and secured using FIB-AD. The μ-sample is then FIB-thinned further, to a strip of about 0.1 μm thick. All of the above steps are accomplished under vacuum in the FIB system. This design permits a reliable and user-friendly environment for TEM specimen preparation, while keeping chips or wafer samples intact. It also permits operators to repeat TEM inspection and FIB-milling so that precise areas of interest may be made available for TEM inspection. Both cross-sectional and plan view TEM μ-sampling are feasible.