Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
T. Fält
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ITSC 2006, Thermal Spray 2006: Proceedings from the International Thermal Spray Conference, 1369-1374, May 15–18, 2006,
Abstract
View Paper
PDF
Plasma sprayed oxides are effective coatings against wear and corrosion. Low particle velocity in the plasma jet causes a limited interlamellar cohesion. HVOF-sprayed ceramic coatings emerged as an improved alternative. In this paper, microstructural characteristics and tribological performances of HVOF sprayed Al 2 O 3 , nanostructured Al 2 O 3 and Cr 2 O 3 coatings are compared to reference plasma-sprayed Al 2 O 3 and Cr 2 O 3 . The microstructure is analysed by SEM, EDS and XRD. Hardness and fracture toughness are investigated by instrumented indentation and elastic modulus by 3-point bending. Steel wheel and rubber wheel tests have been used to assess dry particle abrasion resistance. Sliding wear resistance is tested by pin-on-disk at room temperature and at 400°C, against SiC and 100Cr6 steel balls. HVOF-sprayed coatings are denser and have better interlamellar cohesion thanks to increased particle velocity. They are harder, tougher, possess a higher elastic modulus and lower porosity. Dry particles abrasion resistance is definitely superior to plasma-sprayed ceramics due to higher toughness; sliding wear resistance is higher, particularly at 400°C.
Proceedings Papers
ITSC 2005, Thermal Spray 2005: Proceedings from the International Thermal Spray Conference, 998-1003, May 2–4, 2005,
Abstract
View Paper
PDF
HVOF thermal spraying has been developed to deposit dense Al 2 O 3 -coatings with improved protective properties for various applications. Nanocrystalline coatings have been found to offer better thermal shock resistance, lower thermal conductivity and better wear resistance than their conventional counterparts. In this paper we describe the development of nanocrystalline Al 2 O 3 and Al 2 O 3 -Ni -coatings, where the grain size of Al 2 O 3 has been decreased and a few percents of nickel has been added in order to toughen the coating. Coatings were manufactured by HV- 2000 HVOF using spray parameters determined based on the on-line spray diagnostics. Parameters were selected aiming at different melting stages of the powder. The resulting microstructure of the coatings and its influence on the coating properties is discussed