Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Steven Y. C. Chen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2005, ISTFA 2005: Conference Proceedings from the 31st International Symposium for Testing and Failure Analysis, 40-45, November 6–10, 2005,
Abstract
View Papertitled, Multi-Point Probing on 65nm Silicon Technology using Static IREM-based Methodology
View
PDF
for content titled, Multi-Point Probing on 65nm Silicon Technology using Static IREM-based Methodology
As silicon manufacturing processes move to smaller feature sizes, new silicon fault isolation and debug challenges arise. This paper presents a methodology for silicon fault isolation/debug that allows for simultaneous probing of multiple locations on the die using static infrared emission logic state imaging. Recent tool enhancements leading to more efficient fault isolation and debug are reviewed. Cases are presented from debug of 65nm products showing how this methodology was used to achieve very low throughput times on a variety of complex new failure mechanisms.