Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Stephen Brink
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2015, ISTFA 2015: Conference Proceedings from the 41st International Symposium for Testing and Failure Analysis, 141-146, November 1–5, 2015,
Abstract
View Paper
PDF
The shift in power conversion and power management applications to thick copper clip technologies and thinner silicon dies enable high-current connections (overcoming limitations of common wire bond) and enhance the heat dissipation properties of System-in-Package solutions. Powerstage innovation integrates enhanced gate drivers with two MOSFETs combining vertical current flow with a lateral power MOSFET. It provides a low on-resistance and requires an extremely low gate charge with industry-standard package outlines - a combination not previously possible with existing silicon platforms. These advancements in both silicon and 3D Multi-Chip- Module packaging complexity present multifaceted challenges to the failure analyst. The various height levels and assembly interfaces can be difficult to deprocess while maintaining all the critical evidence. Further complicating failure isolation within the system is the integration of multiple chips, which can lead to false positives. Most importantly, the discrete MOSFET all too often gets overlooked as just a simple threeterminal device leading to incorrect deductions in determining true root cause. This paper presents the discrete power MOSFET perspective amidst the competing forces of the system-to-board-level failure analysis. It underlines the requirement for diligent analysis at every step and the importance as an analyst to contest the conflicting assumptions of challenging customers. Automatic Test Equipment (ATE) data-logs reported elevated power MOSFET leakage. Initial assumptions believed a MOSFET silicon process issue existed. Through methodical anamnesis and systematic analysis, the true failure was correctly isolated and the power MOSFET vindicated. The authors emphasize the importance of investigating all available evidence, from a macro to micro 3D package perspective, to achieve the bona fide path forward and true root cause.