Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-4 of 4
Stefan Bjorklund
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Andre R. Mayer, Eriel B. Sabino, Hipolito D. C. Fals, Anderson G.M. Pukasiewicz, Willian R. de Oliveira ...
ITSC2024, Thermal Spray 2024: Proceedings from the International Thermal Spray Conference, 632-642, April 29–May 1, 2024,
Abstract
View Paper
PDF
High-pressure die casting (HPDC) is a well-established manufacturing process used in the automotive sector to make high-precision components. The necessity to reduce fuel consumption increases the use of low-density components in the automotive industry. Corrosion induced by molten metal is one of many failure modes for dies, changing the die's geometry and surface roughness. All combined wear changes the dimensional precision of the manufactured parts but also the surface quality of the components. Many additive deposition methods are applied to decrease wear and recover the surface. Thermally sprayed coatings can improve the surface properties and recover the geometry of the die caused by the aluminum attack. The main objective of this work is to observe the behavior of the H13, Cr3C2-25NiCr, and WC10Co4Cr coatings deposited by HVOF and HVAF, tested against Aluminum corrosion and Die-soldering tests. After dissolution, the chromium carbide reacts with the aluminum, creating a tough intermetallic interface, and raising the extraction tensile stress. After Aluminum corrosion tests, it was observed that the WC 10Co 4Cr HVAF coating presented low adhesion to the aluminum with no observed coating failure due to the formation of intermetallic. Die soldering tests indicated that the WC 10Co 4Cr protects the substrate, resulting in lower extraction tensile stress than H13 base material and other HVOF coatings. It was possible to observe that WC 10Co 4Cr HVAF coating showed results comparable to AlCrN PVD coating.
Proceedings Papers
ITSC2023, Thermal Spray 2023: Proceedings from the International Thermal Spray Conference, 303-309, May 22–25, 2023,
Abstract
View Paper
PDF
For the last few years, the HVAF process has been established as a commercially used process and has gained an increasing share in the market of thermal spraying. The main thermal spray materials being used for HVAF spraying have been those based on the tungsten carbide family. Economical aspects and European regulations on chemicals management REACH (Registration, Evaluation and Authorisation of Chemicals) have motivated the demand for thinner WC based coatings, which are still dense and wear resistant. This demand has progressively increased, and the trend shows a further growth in the need for thermal spray feedstock for HVAF sprayed net shape coatings. The challenge for powder producers lies in providing suitable spray powders, with high and consistent quality as well as in considerable volume, to be able to make reliable recommendations to the users of HVAF technology. A deeper understanding of powder requirements for net shape coatings, matching the needs with new powder solutions, and appreciation of the differences in behavior or performance depending on powder type are essential to address the above challenges and constitutes the theme of this paper.
Proceedings Papers
ITSC 2021, Thermal Spray 2021: Proceedings from the International Thermal Spray Conference, 416-421, May 24–28, 2021,
Abstract
View Paper
PDF
High-entropy alloys (HEAs) represent an innovative development approach for new alloy systems. These materials have been found to yield promising properties, such as high strength in combination with sufficient ductility as well as high wear and corrosion resistance. Especially for alloys with a body-centered cubic (bcc) structure, advantageous surface properties have been revealed. However, typical HEA systems contain high contents of expensive or scarce elements. Consequently, applying them as coatings where their use is limited to the surface represents an exciting pathway enabling economical exploitation of their superior properties. Nevertheless, processing conditions strongly influence the resulting microstructure and phase formation, which in turn has a considerable effect on the functional properties of HEAs. In the presented study, microstructural differences between high-velocity oxygen fuel (HVOF) and high-velocity air fuel (HVAF) sprayed coatings of the alloy AlCrFeCoNi are investigated. A metastable bcc structure is formed in both coating processes. Precipitation reactions are suppressed by the rapid solidification during atomization and by the relatively low thermal input during spraying. The coating resistance to corrosive media was investigated in detail, and an improved passivation behavior was observed in the HVAF coatings.
Proceedings Papers
ITSC 2015, Thermal Spray 2015: Proceedings from the International Thermal Spray Conference, 406-412, May 11–14, 2015,
Abstract
View Paper
PDF
Our previous experiments with low-cost steel substrates confirmed that individual steps of conventional thermal barrier coating (TBC) deposition may influence fatigue properties of the coated samples differently. In this study, testing was carried out for TBC samples deposited on industrially more relevant Hastelloy X substrates. Samples were tested after each step of TBC deposition process: as-received (non-coated), grit-blasted, bond-coated (NiCoCrAlY) and bondcoated + top-coated (yttria-stabilized zirconia - YSZ). Conventional atmospheric plasma spraying (APS) with gas stabilized plasma torch was used for deposition of both bond coat and top coat. In addition, for one half of the samples, bond coat was prepared by consecutive combination of HVAF (High Velocity Air Fuel) and APS processes. Samples were tested both in as-sprayed condition and after 100 hours annealing at 980 °C, which simulated in-service conditions. Obtained results showed that different fatigue performance may be expected for various stages of the TBC deposition as well as due to the variation of the deposition process and sample temperature history.